StochSoCs: High Performance Biocomputing Simulations for Large Scale Systems Biology

E. Manolakos, Elias Kouskoumvekakis
{"title":"StochSoCs: High Performance Biocomputing Simulations for Large Scale Systems Biology","authors":"E. Manolakos, Elias Kouskoumvekakis","doi":"10.1109/HPCS.2017.156","DOIUrl":null,"url":null,"abstract":"The stochastic simulation of large-scale biochemical reaction networks is of great importance for systems biology since it enables the study of inherently stochastic biological mechanisms at the whole cell scale. Stochastic Simulation Algorithms (SSA) allow us to simulate the dynamic behavior of complex kinetic models, but their high computational cost makes them very slow for many realistic size problems. We present a pilot service, named WebStoch, developed in the context of our StochSoCs research project, allowing life scientists with no high-performance computing expertise to perform over the internet stochastic simulations of large-scale biological network models described in the SBML standard format. Biomodels submitted to the service are parsed automatically and then placed for parallel execution on distributed worker nodes. The workers are implemented using multi-core and many-core processors, or FPGA accelerators that can handle the simulation of thousands of stochastic repetitions of complex biomodels, with possibly thousands of reactions and interacting species. Using benchmark LCSE biomodels, whose workload can be scaled on demand, we demonstrate linear speedup and more than two orders of magnitude higher throughput than existing serial simulators.","PeriodicalId":115758,"journal":{"name":"2017 International Conference on High Performance Computing & Simulation (HPCS)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on High Performance Computing & Simulation (HPCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCS.2017.156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The stochastic simulation of large-scale biochemical reaction networks is of great importance for systems biology since it enables the study of inherently stochastic biological mechanisms at the whole cell scale. Stochastic Simulation Algorithms (SSA) allow us to simulate the dynamic behavior of complex kinetic models, but their high computational cost makes them very slow for many realistic size problems. We present a pilot service, named WebStoch, developed in the context of our StochSoCs research project, allowing life scientists with no high-performance computing expertise to perform over the internet stochastic simulations of large-scale biological network models described in the SBML standard format. Biomodels submitted to the service are parsed automatically and then placed for parallel execution on distributed worker nodes. The workers are implemented using multi-core and many-core processors, or FPGA accelerators that can handle the simulation of thousands of stochastic repetitions of complex biomodels, with possibly thousands of reactions and interacting species. Using benchmark LCSE biomodels, whose workload can be scaled on demand, we demonstrate linear speedup and more than two orders of magnitude higher throughput than existing serial simulators.
随机soc:大规模系统生物学的高性能生物计算模拟
大规模生化反应网络的随机模拟对于系统生物学具有重要意义,因为它使研究整个细胞尺度上固有的随机生物机制成为可能。随机模拟算法(SSA)使我们能够模拟复杂动力学模型的动态行为,但其高昂的计算成本使其在处理许多实际尺寸问题时速度很慢。我们提出了一项名为WebStoch的试点服务,它是在我们的随机soc研究项目的背景下开发的,允许没有高性能计算专业知识的生命科学家通过互联网对SBML标准格式描述的大规模生物网络模型进行随机模拟。提交给服务的生物模型被自动解析,然后放置在分布式工作节点上并行执行。这些工作人员使用多核和多核处理器,或者FPGA加速器来实现,这些加速器可以处理复杂生物模型的数千个随机重复的模拟,可能有数千个反应和相互作用的物种。使用基准LCSE生物模型,其工作负载可以按需缩放,我们展示了线性加速和比现有串行模拟器高两个数量级以上的吞吐量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信