Audiovisual video context recognition using SVM and genetic algorithm fusion rule weighting

Mikko Roininen, E. Guldogan, M. Gabbouj
{"title":"Audiovisual video context recognition using SVM and genetic algorithm fusion rule weighting","authors":"Mikko Roininen, E. Guldogan, M. Gabbouj","doi":"10.1109/CBMI.2011.5972541","DOIUrl":null,"url":null,"abstract":"The recognition of the surrounding context from video recordings offers interesting possibilities for context awareness of video capable mobile devices. Multimodal analysis provides means for improved recognition accuracy and robustness in different use conditions. We present a mul-timodal video context recognition system fusing audio and video cues with support vector machines (SVM) and simple rules with genetic algorithm (GA) optimized weights. Mul-timodal recognition is shown to outperform the unimodal approaches in recognizing between 21 everyday contexts. The highest correct classification rate of 0.844 is achieved with SVM-based fusion.","PeriodicalId":358337,"journal":{"name":"2011 9th International Workshop on Content-Based Multimedia Indexing (CBMI)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 9th International Workshop on Content-Based Multimedia Indexing (CBMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2011.5972541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The recognition of the surrounding context from video recordings offers interesting possibilities for context awareness of video capable mobile devices. Multimodal analysis provides means for improved recognition accuracy and robustness in different use conditions. We present a mul-timodal video context recognition system fusing audio and video cues with support vector machines (SVM) and simple rules with genetic algorithm (GA) optimized weights. Mul-timodal recognition is shown to outperform the unimodal approaches in recognizing between 21 everyday contexts. The highest correct classification rate of 0.844 is achieved with SVM-based fusion.
视听视频上下文识别采用支持向量机和遗传算法融合规则加权
从视频记录中识别周围环境为具有视频功能的移动设备的上下文感知提供了有趣的可能性。多模态分析提供了在不同使用条件下提高识别精度和鲁棒性的手段。提出了一种多模态视频上下文识别系统,该系统将音频和视频线索与支持向量机(SVM)和遗传算法(GA)优化权值的简单规则融合在一起。多模态识别在21个日常环境之间的识别表现优于单模态方法。基于svm融合的分类正确率最高,为0.844。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信