Similarity measure for CCITT Group 4 compressed document images

Yue Lu, C. Tan, Liying Fan, Weihua Huang
{"title":"Similarity measure for CCITT Group 4 compressed document images","authors":"Yue Lu, C. Tan, Liying Fan, Weihua Huang","doi":"10.1109/ICIP.2001.959247","DOIUrl":null,"url":null,"abstract":"The similarity measure of document images has a crucial role in the area of document image retrieval. A method of measuring the similarity of CCITT Group 4 compressed document images is proposed. The features are extracted directly from the changing elements of the compressed images. Weighted Hausdorff distance is utilized to assign all of the word objects from two document images to corresponding classes by an unsupervised classifier, whereas the possible stop words are excluded. Document vectors are built by the occurrence frequency of the word object classes, and the pair-wise similarity of two document images is represented by the scalar product of the document vectors. Five group articles relating to different domains are used to test the validity of the presented approach.","PeriodicalId":291827,"journal":{"name":"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2001.959247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The similarity measure of document images has a crucial role in the area of document image retrieval. A method of measuring the similarity of CCITT Group 4 compressed document images is proposed. The features are extracted directly from the changing elements of the compressed images. Weighted Hausdorff distance is utilized to assign all of the word objects from two document images to corresponding classes by an unsupervised classifier, whereas the possible stop words are excluded. Document vectors are built by the occurrence frequency of the word object classes, and the pair-wise similarity of two document images is represented by the scalar product of the document vectors. Five group articles relating to different domains are used to test the validity of the presented approach.
CCITT组4压缩文档图像的相似度度量
文档图像的相似度度量在文档图像检索领域起着至关重要的作用。提出了一种测量CCITT Group 4压缩文档图像相似度的方法。这些特征是直接从压缩图像的变化元素中提取的。利用加权Hausdorff距离,通过无监督分类器将两个文档图像中的所有单词对象分配到相应的类中,而排除可能的停止词。文档向量由单词对象类的出现频率构建,两个文档图像的成对相似度由文档向量的标量积表示。有关不同领域的五组文章被用来测试所提出的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信