High-Level Synthesis of Transactional Memory

Omar Ragheb, J. Anderson
{"title":"High-Level Synthesis of Transactional Memory","authors":"Omar Ragheb, J. Anderson","doi":"10.1145/3394885.3431556","DOIUrl":null,"url":null,"abstract":"The rising popularity of high-level synthesis (HLS) is due to the complexity and amount of background knowledge required to design hardware circuits. Despite significant recent advances in HLS research, HLS-generated circuits may be of lower quality than human-expert-designed circuits, from the performance, power, or area perspectives. In this work, we aim to raise circuit performance by introducing a transactional memory (TM) synchronization model to the open-source LegUp HLS tool [1]. LegUp HLS supports the synthesis of multi-threaded software into parallel hardware [4], including support for mutual-exclusion lock-based synchronization. With the introduction of transactional memory-based synchronization, location-specific (i.e. finer grained) memory locks are made possible, where instead of placing an access lock around an entire array, one can place a lock around individual array elements. Significant circuit performance improvements are observed through reduced stalls due to contention, and greater memory-access parallelism. On a set of 5 parallel benchmarks, wall-clock time is improved by 2.0×, on average, by the TM synchronization model vs. mutex-based locks.","PeriodicalId":186307,"journal":{"name":"2021 26th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"210 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 26th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3394885.3431556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The rising popularity of high-level synthesis (HLS) is due to the complexity and amount of background knowledge required to design hardware circuits. Despite significant recent advances in HLS research, HLS-generated circuits may be of lower quality than human-expert-designed circuits, from the performance, power, or area perspectives. In this work, we aim to raise circuit performance by introducing a transactional memory (TM) synchronization model to the open-source LegUp HLS tool [1]. LegUp HLS supports the synthesis of multi-threaded software into parallel hardware [4], including support for mutual-exclusion lock-based synchronization. With the introduction of transactional memory-based synchronization, location-specific (i.e. finer grained) memory locks are made possible, where instead of placing an access lock around an entire array, one can place a lock around individual array elements. Significant circuit performance improvements are observed through reduced stalls due to contention, and greater memory-access parallelism. On a set of 5 parallel benchmarks, wall-clock time is improved by 2.0×, on average, by the TM synchronization model vs. mutex-based locks.
事务性内存的高级综合
高级合成(HLS)的日益普及是由于设计硬件电路所需的复杂性和大量的背景知识。尽管最近在HLS研究方面取得了重大进展,但从性能、功率或面积的角度来看,HLS生成的电路可能比人类专家设计的电路质量低。在这项工作中,我们的目标是通过在开源的LegUp HLS工具中引入事务性内存(TM)同步模型来提高电路性能[1]。LegUp HLS支持将多线程软件合成为并行硬件[4],包括支持基于互斥锁的同步。随着基于事务性内存的同步的引入,特定于位置(即更细粒度)的内存锁成为可能,在这种情况下,可以在单个数组元素周围放置锁,而不是在整个数组周围放置访问锁。显著的电路性能改进是通过减少由于争用造成的停机,以及更大的内存访问并行性。在一组5个并行基准测试中,与基于互斥锁的锁相比,TM同步模型的挂钟时间平均提高了2.0倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信