Google Search Trends and Exchange Rate Volatility – Evidence from India's Currency Market

Hsiu-Chen Fan Chiang, Peiwen Jiang, Chia-Chien Chang
{"title":"Google Search Trends and Exchange Rate Volatility – Evidence from India's Currency Market","authors":"Hsiu-Chen Fan Chiang, Peiwen Jiang, Chia-Chien Chang","doi":"10.1108/S2514-465020210000009010","DOIUrl":null,"url":null,"abstract":"We empirically investigate the forecasting ability of USD-INR exchange rate volatility models by considering Google Trends data. Within a multiple regression framework, we use historical volatility and liquidity measures to build our benchmark volatility model (Chandra & Thenmozhi, 2014). Moreover, we extend Bulut (2018) to incorporate indexes for 15 keywords (price-related, income-related, and liquidity-related) from Google Trends data into our benchmark volatility model to evaluate the forecasting ability of the models. Our results indicate that Google Trends data can improve volatility prediction and that among the groups of keywords that we consider, the price-related keywords have the best forecasting ability. Incorporating data on searches for “prices” into the model produces the highest reduction in the forecasting error: a 22.75% decrease compared to the level in the benchmark model. Hence, these empirical findings indicate that Google Trends data contain information that influences exchange rate movements.","PeriodicalId":228644,"journal":{"name":"Advances in Pacific Basin Business, Economics and Finance","volume":"299 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Pacific Basin Business, Economics and Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/S2514-465020210000009010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We empirically investigate the forecasting ability of USD-INR exchange rate volatility models by considering Google Trends data. Within a multiple regression framework, we use historical volatility and liquidity measures to build our benchmark volatility model (Chandra & Thenmozhi, 2014). Moreover, we extend Bulut (2018) to incorporate indexes for 15 keywords (price-related, income-related, and liquidity-related) from Google Trends data into our benchmark volatility model to evaluate the forecasting ability of the models. Our results indicate that Google Trends data can improve volatility prediction and that among the groups of keywords that we consider, the price-related keywords have the best forecasting ability. Incorporating data on searches for “prices” into the model produces the highest reduction in the forecasting error: a 22.75% decrease compared to the level in the benchmark model. Hence, these empirical findings indicate that Google Trends data contain information that influences exchange rate movements.
谷歌搜索趋势和汇率波动-来自印度货币市场的证据
本文采用Google趋势数据对美元兑印度卢比汇率波动率模型的预测能力进行了实证研究。在多元回归框架内,我们使用历史波动率和流动性措施来构建基准波动率模型(Chandra & Thenmozhi, 2014)。此外,我们扩展了Bulut(2018),将来自谷歌趋势数据的15个关键字(价格相关、收入相关和流动性相关)的指数纳入我们的基准波动率模型,以评估模型的预测能力。我们的研究结果表明,谷歌趋势数据可以提高波动性预测,并且在我们考虑的关键字组中,与价格相关的关键字具有最佳的预测能力。将搜索“价格”的数据合并到模型中,预测误差的降低幅度最大:与基准模型中的水平相比,降低了22.75%。因此,这些实证研究结果表明,谷歌趋势数据包含影响汇率变动的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信