A Multiple Features Distance Preserving (MFDP) Model for Saliency Detection

Dongyan Guo, Jian Zhang, Min Xu, Xiangjian He, Minxian Li, Chunxia Zhao
{"title":"A Multiple Features Distance Preserving (MFDP) Model for Saliency Detection","authors":"Dongyan Guo, Jian Zhang, Min Xu, Xiangjian He, Minxian Li, Chunxia Zhao","doi":"10.1109/DICTA.2014.7008087","DOIUrl":null,"url":null,"abstract":"Playing a vital role, saliency has been widely applied for various image analysis tasks, such as content-aware image retargeting, image retrieval and object detection. It is generally accepted that saliency detection can benefit from the integration of multiple visual features. However, most of the existing literatures fuse multiple features at saliency map level without considering cross-feature information, i.e. generate a saliency map based on several maps computed from an individual feature. In this paper, we propose a Multiple Feature Distance Preserving (MFDP) model to seamlessly integrate multiple visual features through an alternative optimization process. Our method outperforms the state-of-the-arts methods on saliency detection. Saliency detected by our method is further cooperated with seam carving algorithm and significantly improves the performance on image retargeting.","PeriodicalId":146695,"journal":{"name":"2014 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2014.7008087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Playing a vital role, saliency has been widely applied for various image analysis tasks, such as content-aware image retargeting, image retrieval and object detection. It is generally accepted that saliency detection can benefit from the integration of multiple visual features. However, most of the existing literatures fuse multiple features at saliency map level without considering cross-feature information, i.e. generate a saliency map based on several maps computed from an individual feature. In this paper, we propose a Multiple Feature Distance Preserving (MFDP) model to seamlessly integrate multiple visual features through an alternative optimization process. Our method outperforms the state-of-the-arts methods on saliency detection. Saliency detected by our method is further cooperated with seam carving algorithm and significantly improves the performance on image retargeting.
一种基于多特征距离保持的显著性检测模型
显著性在内容感知图像重定位、图像检索和目标检测等各种图像分析任务中发挥着至关重要的作用。人们普遍认为,显著性检测可以受益于多个视觉特征的整合。然而,现有的文献大多在显著性图层面融合多个特征,而没有考虑交叉特征信息,即由单个特征计算的多个地图生成显著性图。在本文中,我们提出了一种多特征距离保持(MFDP)模型,通过一种替代优化过程无缝集成多个视觉特征。我们的方法在显著性检测方面优于最先进的方法。该方法将显著性检测与接缝雕刻算法进一步配合,显著提高了图像重定位的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信