Optimal polygonal approximation of digital curves

Arie Pikaz, I. Dinstein
{"title":"Optimal polygonal approximation of digital curves","authors":"Arie Pikaz, I. Dinstein","doi":"10.1109/ICPR.1994.576378","DOIUrl":null,"url":null,"abstract":"An algorithm for optimal polygonal approximation is presented. Given a value for the maximal allowed distance between the approximation and the curve, the algorithm finds an approximation with the minimal number of vertices. The city-block metric is used to measure the distance between the approximation and the curve. The algorithm worst case complexity is O(n/sup 2/) where n is the number of points in the curve. This complexity is attractive compared to the complexity of other algorithms for optimal approximations. An efficient and optimal solution for the case of closed curves where no initial point is given, is also presented.","PeriodicalId":312019,"journal":{"name":"Proceedings of 12th International Conference on Pattern Recognition","volume":"31 Suppl 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 12th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.1994.576378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55

Abstract

An algorithm for optimal polygonal approximation is presented. Given a value for the maximal allowed distance between the approximation and the curve, the algorithm finds an approximation with the minimal number of vertices. The city-block metric is used to measure the distance between the approximation and the curve. The algorithm worst case complexity is O(n/sup 2/) where n is the number of points in the curve. This complexity is attractive compared to the complexity of other algorithms for optimal approximations. An efficient and optimal solution for the case of closed curves where no initial point is given, is also presented.
数字曲线的最佳多边形逼近
提出了一种最优多边形逼近算法。给定近似值和曲线之间的最大允许距离的值,该算法找到具有最小顶点数的近似值。城市街区度量用于测量近似值与曲线之间的距离。算法的最坏情况复杂度是O(n/sup 2/),其中n是曲线上点的个数。与其他最优逼近算法的复杂性相比,这种复杂性是有吸引力的。对于无初始点的闭曲线,给出了一种有效的最优解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信