Effective neural network approach to image recognition and control

G. Ososkov
{"title":"Effective neural network approach to image recognition and control","authors":"G. Ososkov","doi":"10.1109/PHYCON.2003.1236825","DOIUrl":null,"url":null,"abstract":"A new approach to structuring and training of feed-forward artificial neural networks (ANN) is proposed. That leads to overcome many shortcomings of multilayer perceptrons and ANNs with radial basis functions (RBF-nets). A dynamical training algorithm is developed in order to keep the optimal number of neurons in the hidden layers and to guarantee the finiteness of the training procedure due to individual training of each neuron. Results of applying of the proposed neural network to recognizing frontal images of human faces look very promising and give rise to propose a non-expensive security system.","PeriodicalId":438483,"journal":{"name":"2003 IEEE International Workshop on Workload Characterization (IEEE Cat. No.03EX775)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE International Workshop on Workload Characterization (IEEE Cat. No.03EX775)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PHYCON.2003.1236825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

A new approach to structuring and training of feed-forward artificial neural networks (ANN) is proposed. That leads to overcome many shortcomings of multilayer perceptrons and ANNs with radial basis functions (RBF-nets). A dynamical training algorithm is developed in order to keep the optimal number of neurons in the hidden layers and to guarantee the finiteness of the training procedure due to individual training of each neuron. Results of applying of the proposed neural network to recognizing frontal images of human faces look very promising and give rise to propose a non-expensive security system.
有效的神经网络方法用于图像识别和控制
提出了一种新的前馈人工神经网络(ANN)的结构和训练方法。这克服了多层感知器和径向基函数神经网络的许多缺点。为了保持隐藏层中神经元的最优数量,并保证每个神经元单独训练过程的有限性,提出了一种动态训练算法。将所提出的神经网络应用于人脸正面图像识别的结果很有前景,并提出了一种不昂贵的安全系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信