Multi-Label Classification for Articles in Thai Journal Database from Article's Abstract

Chintrai Puttipornchai, Chanyachatchawan Sapa, Nuengwong Tuaycharoen
{"title":"Multi-Label Classification for Articles in Thai Journal Database from Article's Abstract","authors":"Chintrai Puttipornchai, Chanyachatchawan Sapa, Nuengwong Tuaycharoen","doi":"10.1109/jcsse54890.2022.9836270","DOIUrl":null,"url":null,"abstract":"The increasing number of Thai research articles makes it challenging to classify them into sub-categories. This task requires specialists and a lot of time to classify the different types of articles. Therefore, this research presents methods and techniques for multi-label classification of computer science articles in Thai journals. We present a comparison of different methods for multi-label classification, including Binary Relevance (BR), Classifier Chains (CC), and Label Power-set (LP) with a word segmentation method that uses a Support Vector Machine (SVM) classifier. We found that the CC-SVM method combined with Deepcut word segmentation and TF-IDF produces the best results for both example-based and label-based metrics, with ML-accuracy is 0.572, Subset accuracy is 0.286, F-Measure is 0.666, Micro-average precision is 0.57, and Micro-average F-Measure is 0.70. In Future work, Subset accuracy should be improved for the multi-label classification model in the Thai language.","PeriodicalId":284735,"journal":{"name":"2022 19th International Joint Conference on Computer Science and Software Engineering (JCSSE)","volume":"314 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 19th International Joint Conference on Computer Science and Software Engineering (JCSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/jcsse54890.2022.9836270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The increasing number of Thai research articles makes it challenging to classify them into sub-categories. This task requires specialists and a lot of time to classify the different types of articles. Therefore, this research presents methods and techniques for multi-label classification of computer science articles in Thai journals. We present a comparison of different methods for multi-label classification, including Binary Relevance (BR), Classifier Chains (CC), and Label Power-set (LP) with a word segmentation method that uses a Support Vector Machine (SVM) classifier. We found that the CC-SVM method combined with Deepcut word segmentation and TF-IDF produces the best results for both example-based and label-based metrics, with ML-accuracy is 0.572, Subset accuracy is 0.286, F-Measure is 0.666, Micro-average precision is 0.57, and Micro-average F-Measure is 0.70. In Future work, Subset accuracy should be improved for the multi-label classification model in the Thai language.
基于文章摘要的泰国期刊数据库文章多标签分类
泰国研究文章的数量越来越多,很难将它们分类为子类别。这项任务需要专家和大量的时间来对不同类型的文章进行分类。因此,本研究提出了泰国期刊中计算机科学文章的多标签分类方法和技术。我们提出了不同的多标签分类方法,包括二元相关(BR),分类器链(CC)和标签功率集(LP)与使用支持向量机(SVM)分类器的分词方法的比较。我们发现,CC-SVM方法结合Deepcut分词和TF-IDF,在基于示例和基于标签的度量指标上都产生了最好的结果,ml精度为0.572,子集精度为0.286,F-Measure为0.666,Micro-average precision为0.57,Micro-average F-Measure为0.70。在未来的工作中,需要进一步提高泰语多标签分类模型的子集精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信