{"title":"Flow Through Microchannels With Textured Walls: A Theory for Moderately Slow Variations","authors":"Mainendra Kumar Dewangan, S. Datta","doi":"10.1115/ICNMM2018-7607","DOIUrl":null,"url":null,"abstract":"A microchannel with topographical texture on one or more of its walls is often employed to achieve objectives such as mixing, pumping and bio-molecular detection in microfluidics. Flow through a microchannel with sinusoidal ridges on one of its walls, when the ridges are oriented in the direction of flow, is studied. The classical infinitely-slow-variation or lubrication analysis is extended through a systematic scaling and perturbation procedure for applicability to moderately slow variations. Finite element simulations are used to assess the relative strengths and weaknesses of moderately and infinitely slow-variation theories as well as a small-amplitude theory from the literature based on the domain perturbation technique. Depending on the wavelength of patterning, the hydraulic permeability can either decrease or increase with pattern amplitude with a transitional behavior from an initial decrease to subsequent increase is observed at certain wavelengths.","PeriodicalId":137208,"journal":{"name":"ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ICNMM2018-7607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A microchannel with topographical texture on one or more of its walls is often employed to achieve objectives such as mixing, pumping and bio-molecular detection in microfluidics. Flow through a microchannel with sinusoidal ridges on one of its walls, when the ridges are oriented in the direction of flow, is studied. The classical infinitely-slow-variation or lubrication analysis is extended through a systematic scaling and perturbation procedure for applicability to moderately slow variations. Finite element simulations are used to assess the relative strengths and weaknesses of moderately and infinitely slow-variation theories as well as a small-amplitude theory from the literature based on the domain perturbation technique. Depending on the wavelength of patterning, the hydraulic permeability can either decrease or increase with pattern amplitude with a transitional behavior from an initial decrease to subsequent increase is observed at certain wavelengths.