{"title":"Failures in Airplane Engine Crankshafts","authors":"Jivan B. Shah","doi":"10.31399/asm.fach.aero.c9001552","DOIUrl":null,"url":null,"abstract":"\n This report covers case histories of failures in fixed-wing light aeroplane and helicopter components. A crankshaft of AISI 4340 Ni-Cr-Mo alloy steel, heat treated and nitrided all over, failed in bending fatigue. The nitrided layer was ground too rapidly causing excessive heat generation which induced grinding cracks and grinding burn. Tensional stresses resulting from grinding developed in a thin surface layer. On another crankshaft, chromium plating introduced undesirable residual tensile stresses. Such plating is an unsatisfactory finish for crankshafts of aircraft engines. Aircraft engine manufacturers and aeronautical standards require magnetic particle inspection to detect grinding cracks after reconditioning. Renitriding after any grinding is needed also, regardless of the amount of undersize as it introduces beneficial residual compressive stresses.","PeriodicalId":326464,"journal":{"name":"ASM Failure Analysis Case Histories: Air and Spacecraft","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASM Failure Analysis Case Histories: Air and Spacecraft","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.fach.aero.c9001552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This report covers case histories of failures in fixed-wing light aeroplane and helicopter components. A crankshaft of AISI 4340 Ni-Cr-Mo alloy steel, heat treated and nitrided all over, failed in bending fatigue. The nitrided layer was ground too rapidly causing excessive heat generation which induced grinding cracks and grinding burn. Tensional stresses resulting from grinding developed in a thin surface layer. On another crankshaft, chromium plating introduced undesirable residual tensile stresses. Such plating is an unsatisfactory finish for crankshafts of aircraft engines. Aircraft engine manufacturers and aeronautical standards require magnetic particle inspection to detect grinding cracks after reconditioning. Renitriding after any grinding is needed also, regardless of the amount of undersize as it introduces beneficial residual compressive stresses.