Generalized cross-validation as a method for choosing a good ridge parameter

G. Golub, M. Heath, G. Wahba
{"title":"Generalized cross-validation as a method for choosing a good ridge parameter","authors":"G. Golub, M. Heath, G. Wahba","doi":"10.1080/00401706.1979.10489751","DOIUrl":null,"url":null,"abstract":"Consider the ridge estimate (λ) for β in the model unknown, (λ) = (X T X + nλI)−1 X T y. We study the method of generalized cross-validation (GCV) for choosing a good value for λ from the data. The estimate is the minimizer of V(λ) given by where A(λ) = X(X T X + nλI)−1 X T . This estimate is a rotation-invariant version of Allen's PRESS, or ordinary cross-validation. This estimate behaves like a risk improvement estimator, but does not require an estimate of σ2, so can be used when n − p is small, or even if p ≥ 2 n in certain cases. The GCV method can also be used in subset selection and singular value truncation methods for regression, and even to choose from among mixtures of these methods.","PeriodicalId":250823,"journal":{"name":"Milestones in Matrix Computation","volume":"163 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1979-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3015","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Milestones in Matrix Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00401706.1979.10489751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3015

Abstract

Consider the ridge estimate (λ) for β in the model unknown, (λ) = (X T X + nλI)−1 X T y. We study the method of generalized cross-validation (GCV) for choosing a good value for λ from the data. The estimate is the minimizer of V(λ) given by where A(λ) = X(X T X + nλI)−1 X T . This estimate is a rotation-invariant version of Allen's PRESS, or ordinary cross-validation. This estimate behaves like a risk improvement estimator, but does not require an estimate of σ2, so can be used when n − p is small, or even if p ≥ 2 n in certain cases. The GCV method can also be used in subset selection and singular value truncation methods for regression, and even to choose from among mixtures of these methods.
采用广义交叉验证方法选择良好的脊参数
考虑未知模型中β的脊估计(λ), (λ) = (X T X + nλI) - 1 X T y。我们研究了从数据中选择λ的良好值的广义交叉验证(GCV)方法。估计是V(λ)的最小值,其中A(λ) = X(X T X + nλI)−1 X T。这个估计是Allen的PRESS的旋转不变版本,或者是普通的交叉验证。这种估计的行为类似于风险改进估计,但不需要σ2的估计,因此可以在n - p很小的情况下使用,甚至在某些情况下p≥2n。GCV方法还可以用于回归的子集选择和奇异值截断方法,甚至可以在这些方法的混合中进行选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信