The HSPRec E-Commerce System Open Source Code Implementation

C. Ezeife, Mahreen Nasir, Ritu Chaturvedi, Angel Veliz Castro
{"title":"The HSPRec E-Commerce System Open Source Code Implementation","authors":"C. Ezeife, Mahreen Nasir, Ritu Chaturvedi, Angel Veliz Castro","doi":"10.1109/icisfall51598.2021.9627424","DOIUrl":null,"url":null,"abstract":"To promote big data application access, usage and deployment, this paper presents a downloadable open source code implementation for an E-Commerce Recommendation system, HSPRec (Historical Sequential Pattern Recommendation System), in JAVA. The HSPRec system is composed of six different modules for generating purchase/click sequential databases, mining sequential patterns, computing click purchase similarities, generating purchase sequential rules, computing weights for frequent purchase patterns through Weighted Frequent Purchase Pattern Miner, and normalization of the user-item ratings to predict level of interest. The source code of each module and the main runner are discussed under four possible headings of running environment, input data files and format, minimum support format, output data files and format. The overall goal of the HSPRec system is to improve E-commerce Recommendation accuracy by incorporating more complex sequential patterns of user purchase and click stream behavior learned through frequent sequential purchase patterns. HSPRec provides more accurate recommendations than the tested comparative systems.","PeriodicalId":240142,"journal":{"name":"2021 IEEE/ACIS 20th International Fall Conference on Computer and Information Science (ICIS Fall)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACIS 20th International Fall Conference on Computer and Information Science (ICIS Fall)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icisfall51598.2021.9627424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To promote big data application access, usage and deployment, this paper presents a downloadable open source code implementation for an E-Commerce Recommendation system, HSPRec (Historical Sequential Pattern Recommendation System), in JAVA. The HSPRec system is composed of six different modules for generating purchase/click sequential databases, mining sequential patterns, computing click purchase similarities, generating purchase sequential rules, computing weights for frequent purchase patterns through Weighted Frequent Purchase Pattern Miner, and normalization of the user-item ratings to predict level of interest. The source code of each module and the main runner are discussed under four possible headings of running environment, input data files and format, minimum support format, output data files and format. The overall goal of the HSPRec system is to improve E-commerce Recommendation accuracy by incorporating more complex sequential patterns of user purchase and click stream behavior learned through frequent sequential purchase patterns. HSPRec provides more accurate recommendations than the tested comparative systems.
HSPRec电子商务系统开源代码实现
为了促进大数据应用的访问、使用和部署,本文提出了一个电子商务推荐系统HSPRec(历史顺序模式推荐系统)的JAVA可下载的开源代码实现。HSPRec系统由六个不同的模块组成:生成购买/点击顺序数据库,挖掘顺序模式,计算点击购买相似度,生成购买顺序规则,通过加权频繁购买模式挖掘器计算频繁购买模式的权重,以及规范化用户-商品评级以预测兴趣水平。从运行环境、输入数据文件和格式、最小支持格式、输出数据文件和格式四种可能的标题下讨论了各模块的源代码和主运行程序。HSPRec系统的总体目标是通过整合更复杂的用户购买顺序模式和通过频繁的顺序购买模式学习到的点击流行为来提高电子商务推荐的准确性。HSPRec提供了比经过测试的比较系统更准确的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信