{"title":"Tools for Assessment of Occupational Health Risks of some Engineered Nanoparticles and Carbon Materials Used in Semiconductor Applications","authors":"Ponnapat Watjanatepin, D. Prodanov","doi":"10.5772/INTECHOPEN.76567","DOIUrl":null,"url":null,"abstract":"Engineered nanomaterials (ENM) are used in a wide variety of applications: from cosmetics and paints to sportswear and semiconductor chips. While for chemicals there are established regulatory frameworks dealing with the risk for the consumers, workers, and the environment, this is not the case for nanomaterials. This is precisely why ENMs are used—the properties of matter change at the nanoscale and become dependent on the particle morphology and size. Our understanding on how such nano-systems react with biological matter, such as cells and tissues, is far from complete, and this brings about an increasing level of uncertainty in the research and development process. This chapter will give an overview of several materials, which are either used or have potential applications in nanoelectronics. While silicon dioxide and metal oxide nanoparticles are used in semiconductor processing in standard polishing steps, applications of carbon materials may be more disruptive. As promising materials with broad applications, we focus on carbon nanotubes and graphene. So-identified materials are used to illustrate the use of different risk assessment tools in the occupational setting of nanoelectronics. The application of such tools in itself is also a growing area of research efforts supported by international stakeholders, such as the European Commission.","PeriodicalId":443649,"journal":{"name":"Occupational Health and Safety - A Multi-Regional Perspective","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Occupational Health and Safety - A Multi-Regional Perspective","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.76567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Engineered nanomaterials (ENM) are used in a wide variety of applications: from cosmetics and paints to sportswear and semiconductor chips. While for chemicals there are established regulatory frameworks dealing with the risk for the consumers, workers, and the environment, this is not the case for nanomaterials. This is precisely why ENMs are used—the properties of matter change at the nanoscale and become dependent on the particle morphology and size. Our understanding on how such nano-systems react with biological matter, such as cells and tissues, is far from complete, and this brings about an increasing level of uncertainty in the research and development process. This chapter will give an overview of several materials, which are either used or have potential applications in nanoelectronics. While silicon dioxide and metal oxide nanoparticles are used in semiconductor processing in standard polishing steps, applications of carbon materials may be more disruptive. As promising materials with broad applications, we focus on carbon nanotubes and graphene. So-identified materials are used to illustrate the use of different risk assessment tools in the occupational setting of nanoelectronics. The application of such tools in itself is also a growing area of research efforts supported by international stakeholders, such as the European Commission.