{"title":"Multi-dimensional storage virtualization","authors":"Lan Huang, Gang Peng, T. Chiueh","doi":"10.1145/1005686.1005692","DOIUrl":null,"url":null,"abstract":"Most state-of-the-art commercial storage virtualization systems focus only on one particular storage attribute, capacity. This paper describes the design, implementation and evaluation of a multi-dimensional storage virtualization system called Stonehenge, which is able to virtualize a cluster-based physical storage system along multiple dimensions, including bandwidth, capacity, and latency. As a result, Stonehenge is able to multiplex multiple virtual disks, each with a distinct bandwidth, capacity, and latency attribute, on a single physical storage system as if they are separate physical disks. A key enabling technology for Stonehenge is an efficiency-aware real-time disk scheduling algorithm called dual-queue disk scheduling, which maximizes disk utilization efficiency while providing Quality of Service (QoS) guarantees. To optimize disk utilization efficiency, Stonehenge exploits run-time measurements extensively, for admission control, computing latency-derived bandwidth requirement, and predicting disk service time.","PeriodicalId":172626,"journal":{"name":"SIGMETRICS '04/Performance '04","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"117","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGMETRICS '04/Performance '04","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1005686.1005692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 117
Abstract
Most state-of-the-art commercial storage virtualization systems focus only on one particular storage attribute, capacity. This paper describes the design, implementation and evaluation of a multi-dimensional storage virtualization system called Stonehenge, which is able to virtualize a cluster-based physical storage system along multiple dimensions, including bandwidth, capacity, and latency. As a result, Stonehenge is able to multiplex multiple virtual disks, each with a distinct bandwidth, capacity, and latency attribute, on a single physical storage system as if they are separate physical disks. A key enabling technology for Stonehenge is an efficiency-aware real-time disk scheduling algorithm called dual-queue disk scheduling, which maximizes disk utilization efficiency while providing Quality of Service (QoS) guarantees. To optimize disk utilization efficiency, Stonehenge exploits run-time measurements extensively, for admission control, computing latency-derived bandwidth requirement, and predicting disk service time.