Solving the Multi-activity Shift Scheduling Problem using Variable Neighbourhood Search

Yi Qu, Timothy Curtois
{"title":"Solving the Multi-activity Shift Scheduling Problem using Variable Neighbourhood Search","authors":"Yi Qu, Timothy Curtois","doi":"10.5220/0009118102270232","DOIUrl":null,"url":null,"abstract":"This paper presents a set of benchmarks instances for the multi-activity shift scheduling problem and the results produced using a variable neighbourhood search method. The data set is intended as a resource to generate and verify novel research on an important and practical but challenging problem. The variable neighbourhood search uses four different neighbourhood operators and can produce feasible solutions within short computation times.","PeriodicalId":235376,"journal":{"name":"International Conference on Operations Research and Enterprise Systems","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Operations Research and Enterprise Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0009118102270232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents a set of benchmarks instances for the multi-activity shift scheduling problem and the results produced using a variable neighbourhood search method. The data set is intended as a resource to generate and verify novel research on an important and practical but challenging problem. The variable neighbourhood search uses four different neighbourhood operators and can produce feasible solutions within short computation times.
用变邻域搜索求解多工种轮班调度问题
本文给出了多活动班次调度问题的一组基准实例,并使用可变邻域搜索方法得到了结果。该数据集旨在作为一种资源来生成和验证一个重要的、实际的但具有挑战性的问题的新研究。变量邻域搜索使用四种不同的邻域算子,可以在较短的计算时间内得到可行的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信