Mode Decomposition Method for the Frequency Spectrum of Double-Spherical Cavity Resonator

Z. Eremenko, Y. Tarasov, I. Volovichev
{"title":"Mode Decomposition Method for the Frequency Spectrum of Double-Spherical Cavity Resonator","authors":"Z. Eremenko, Y. Tarasov, I. Volovichev","doi":"10.1109/ELNANO.2018.8477479","DOIUrl":null,"url":null,"abstract":"We present a novel theoretical method for solving the Maxwell equations to obtain the frequency spectra of inhomogeneous and asymmetric cavity resonators using only two scalar potentials. The structure we study is a layered spherical cavity resonator with symmetrically or asymmetrically embedded spherical dielectric inclusion. The comparison of the exact numerical results for the frequency spectrum of such a layered resonator with centralized inner sphere, which are obtained directly from Maxwell equations, and the frequency spectrum found based on the developed theory reveals good agreement at the initial part of the frequency scale. The coincidence accuracy depends significantly on the number of seed resonant modes that we use in numerical simulations.","PeriodicalId":269665,"journal":{"name":"2018 IEEE 38th International Conference on Electronics and Nanotechnology (ELNANO)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 38th International Conference on Electronics and Nanotechnology (ELNANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELNANO.2018.8477479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a novel theoretical method for solving the Maxwell equations to obtain the frequency spectra of inhomogeneous and asymmetric cavity resonators using only two scalar potentials. The structure we study is a layered spherical cavity resonator with symmetrically or asymmetrically embedded spherical dielectric inclusion. The comparison of the exact numerical results for the frequency spectrum of such a layered resonator with centralized inner sphere, which are obtained directly from Maxwell equations, and the frequency spectrum found based on the developed theory reveals good agreement at the initial part of the frequency scale. The coincidence accuracy depends significantly on the number of seed resonant modes that we use in numerical simulations.
双球腔谐振器频谱的模态分解方法
我们提出了一种新的理论方法来求解麦克斯韦方程,以获得仅使用两个标量势的非均匀和非对称腔谐振器的频谱。我们研究的结构是对称或不对称嵌入球形介电包体的层状球形腔谐振器。将直接由麦克斯韦方程得到的层状内球谐振腔频谱的精确数值结果与根据所建立的理论得到的频谱在频率尺度的起始部分进行了比较,结果表明两者吻合较好。符合精度在很大程度上取决于我们在数值模拟中使用的种子共振模式的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信