Diagnosing Autism Spectrum Disorder Using Ensemble 3D-CNN: A Preliminary Study

Jingsheng Deng, Md Rakibul Hasan, Minhaz Mahmud, Ma Farsi Hasan, K. A. Ahmed, Md. Zakir Hossain
{"title":"Diagnosing Autism Spectrum Disorder Using Ensemble 3D-CNN: A Preliminary Study","authors":"Jingsheng Deng, Md Rakibul Hasan, Minhaz Mahmud, Ma Farsi Hasan, K. A. Ahmed, Md. Zakir Hossain","doi":"10.1109/ICIP46576.2022.9897628","DOIUrl":null,"url":null,"abstract":"Autism spectrum disorder (ASD) is a neuro-developmental disorder that results in behavioural retardation in verbal communications and social interactions. Traditional ASD detection methods involve assessing patients’ behavioural patterns by medical practitioners, which often lack credibility and precision. The contribution of the current study involves a 3D-CNN (convolutional neural network) model to diagnose ASD patients from healthy individuals using functional magnetic resonance imaging (fMRI) of the brain. We utilised a publicly available dataset, Autism Brain Imaging Data Exchange (ABIDE I), and tested different CNN-based models in individual and combined brain parcellations. Our model showed a better outcome (74.53% accuracy, 69.98% sensitivity, and 76.00% specificity) for combined parcellations than individuals. Further, we compared our model with several state-of-the-art models and discussed the suitability of our model for future prospects. The current model would be a predecessor of future prognosis models or behavioural patterns-based multi-modal models for early detection of ASD.","PeriodicalId":387035,"journal":{"name":"2022 IEEE International Conference on Image Processing (ICIP)","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP46576.2022.9897628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Autism spectrum disorder (ASD) is a neuro-developmental disorder that results in behavioural retardation in verbal communications and social interactions. Traditional ASD detection methods involve assessing patients’ behavioural patterns by medical practitioners, which often lack credibility and precision. The contribution of the current study involves a 3D-CNN (convolutional neural network) model to diagnose ASD patients from healthy individuals using functional magnetic resonance imaging (fMRI) of the brain. We utilised a publicly available dataset, Autism Brain Imaging Data Exchange (ABIDE I), and tested different CNN-based models in individual and combined brain parcellations. Our model showed a better outcome (74.53% accuracy, 69.98% sensitivity, and 76.00% specificity) for combined parcellations than individuals. Further, we compared our model with several state-of-the-art models and discussed the suitability of our model for future prospects. The current model would be a predecessor of future prognosis models or behavioural patterns-based multi-modal models for early detection of ASD.
使用集成3D-CNN诊断自闭症谱系障碍:初步研究
自闭症谱系障碍(ASD)是一种神经发育障碍,导致语言交流和社会互动的行为迟缓。传统的ASD检测方法包括由医生评估患者的行为模式,这往往缺乏可信度和准确性。当前研究的贡献包括3D-CNN(卷积神经网络)模型,该模型使用大脑功能磁共振成像(fMRI)从健康个体中诊断ASD患者。我们使用了一个公开可用的数据集,自闭症脑成像数据交换(ABIDE I),并在个体和组合脑包裹中测试了不同的基于cnn的模型。我们的模型显示出联合包裹优于单个包裹的结果(准确率为74.53%,灵敏度为69.98%,特异性为76.00%)。此外,我们将我们的模型与几个最先进的模型进行了比较,并讨论了我们的模型对未来前景的适用性。目前的模型将是未来预后模型或基于行为模式的多模态ASD早期检测模型的前身。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信