Demonstrating MATE and COCOA for Data Discovery

Jannis Becktepe, Mahdi Esmailoghli, Maximilian Koch, Ziawasch Abedjan
{"title":"Demonstrating MATE and COCOA for Data Discovery","authors":"Jannis Becktepe, Mahdi Esmailoghli, Maximilian Koch, Ziawasch Abedjan","doi":"10.1145/3555041.3589716","DOIUrl":null,"url":null,"abstract":"One of the common use cases for data discovery is to enrich a given table with additional columns from related tables inside a data lake. We have recently introduced MATE and COCOA, two systems for joinability discovery and correlation calculation, respectively. By leveraging two novel index structures, a hash-based Super Key Index, and an Order Index, our system is capable of efficiently identifying tables that join on multiple columns and contain relevant features. We show how the data exploration and enrichment process benefits from our index structures by demonstrating MaCo, a unified system on top of open web and large table corpora.","PeriodicalId":161812,"journal":{"name":"Companion of the 2023 International Conference on Management of Data","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion of the 2023 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3555041.3589716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

One of the common use cases for data discovery is to enrich a given table with additional columns from related tables inside a data lake. We have recently introduced MATE and COCOA, two systems for joinability discovery and correlation calculation, respectively. By leveraging two novel index structures, a hash-based Super Key Index, and an Order Index, our system is capable of efficiently identifying tables that join on multiple columns and contain relevant features. We show how the data exploration and enrichment process benefits from our index structures by demonstrating MaCo, a unified system on top of open web and large table corpora.
演示用于数据发现的MATE和COCOA
数据发现的一个常见用例是使用来自数据湖中相关表的附加列来丰富给定表。我们最近介绍了MATE和COCOA,这两个系统分别用于可连接性发现和相关性计算。通过利用两个新的索引结构,一个基于哈希的Super Key index和一个Order index,我们的系统能够有效地识别在多个列上连接并包含相关特性的表。我们通过展示MaCo,一个基于开放网络和大型表语料库的统一系统,来展示数据探索和丰富过程如何受益于我们的索引结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信