Tracking of non-stationary biological signals with utilizing of adaptive filtering method

M. Honek, L. Malinovský, K. Ondrejkovic, B. Rohal’-Ilkiv
{"title":"Tracking of non-stationary biological signals with utilizing of adaptive filtering method","authors":"M. Honek, L. Malinovský, K. Ondrejkovic, B. Rohal’-Ilkiv","doi":"10.1109/PC.2015.7169977","DOIUrl":null,"url":null,"abstract":"This paper presents an approach intended for tracking of biological non-stationary signals. The proposed approach utilizes a Kalman filter autoregressive model together with a method for estimation of covariance matrices of the uncorrelated process noise and measurement noise. The method was tested in simulations, where the ability of tracking of a class of time varying autoregressive processes was the subject of our interest. The obtained results are promising in the meaning that the suggested algorithm is suitable to track the time varying autoregressive processes with sufficient accuracy.","PeriodicalId":173529,"journal":{"name":"2015 20th International Conference on Process Control (PC)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 20th International Conference on Process Control (PC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PC.2015.7169977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an approach intended for tracking of biological non-stationary signals. The proposed approach utilizes a Kalman filter autoregressive model together with a method for estimation of covariance matrices of the uncorrelated process noise and measurement noise. The method was tested in simulations, where the ability of tracking of a class of time varying autoregressive processes was the subject of our interest. The obtained results are promising in the meaning that the suggested algorithm is suitable to track the time varying autoregressive processes with sufficient accuracy.
利用自适应滤波方法跟踪非平稳生物信号
本文提出了一种用于跟踪生物非平稳信号的方法。该方法利用卡尔曼滤波自回归模型和一种估计不相关过程噪声和测量噪声的协方差矩阵的方法。该方法在模拟中进行了测试,其中跟踪一类时变自回归过程的能力是我们感兴趣的主题。研究结果表明,该算法适用于时变自回归过程的跟踪,并具有足够的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信