Integer-valued Particle Swarm Optimization applied to Sudoku puzzles

J. Hereford, Hunter Gerlach
{"title":"Integer-valued Particle Swarm Optimization applied to Sudoku puzzles","authors":"J. Hereford, Hunter Gerlach","doi":"10.1109/SIS.2008.4668293","DOIUrl":null,"url":null,"abstract":"In this paper we develop a variation of the particle swarm optimization (PSO) algorithm that is tailored to discrete optimization problems. We focus on solving Sudoku puzzles but the ideas can be extended to other problems with discrete solutions. We compare our PSO-based algorithm to the classic PSO and to a (mu+lambda) evolutionary strategy (ES) for 50 puzzles and find that the PSO algorithms do much worse than the ES. We then consider why PSO does not do well on this type of problem.","PeriodicalId":178251,"journal":{"name":"2008 IEEE Swarm Intelligence Symposium","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Swarm Intelligence Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIS.2008.4668293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

In this paper we develop a variation of the particle swarm optimization (PSO) algorithm that is tailored to discrete optimization problems. We focus on solving Sudoku puzzles but the ideas can be extended to other problems with discrete solutions. We compare our PSO-based algorithm to the classic PSO and to a (mu+lambda) evolutionary strategy (ES) for 50 puzzles and find that the PSO algorithms do much worse than the ES. We then consider why PSO does not do well on this type of problem.
整数值粒子群算法在数独游戏中的应用
在本文中,我们开发了一种粒子群优化(PSO)算法的变体,该算法适合于离散优化问题。我们专注于解决数独谜题,但这些想法可以扩展到其他具有离散解的问题。我们将基于PSO的算法与经典PSO算法以及50个谜题的(mu+lambda)进化策略(ES)进行了比较,发现PSO算法的表现远不如ES。然后我们考虑为什么粒子群算法在这类问题上做得不好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信