Sefamerve R&D at ICICS 2021 Mowjaz Multi-Topic Labelling Task

Birol Kuyumcu, Selman Delil, Cüneyt Aksakalli
{"title":"Sefamerve R&D at ICICS 2021 Mowjaz Multi-Topic Labelling Task","authors":"Birol Kuyumcu, Selman Delil, Cüneyt Aksakalli","doi":"10.1109/ICICS52457.2021.9464568","DOIUrl":null,"url":null,"abstract":"This paper describes our contribution to ICICS 2021 Mowjaz Multi-Topic Labelling Task. The purpose of the task is to classify Arabic articles based on their topics. Participating systems are expected to select one or more of the determined topics for each given article. In our system, we experiment with state-of-art pre-trained language models (GigaBERT-v4 and Arabic BERT) and a classical logistic regression to find the best effective model for the problem. We obtained the highest F1-score of 0.8563 with GigaBERT-v4 while Arabic-BERT and logistic regression reached 0.8442 and 0.8081 respectively. Our system ranked 2nd in the competition very close to the winner.","PeriodicalId":421803,"journal":{"name":"2021 12th International Conference on Information and Communication Systems (ICICS)","volume":"43 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 12th International Conference on Information and Communication Systems (ICICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICS52457.2021.9464568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper describes our contribution to ICICS 2021 Mowjaz Multi-Topic Labelling Task. The purpose of the task is to classify Arabic articles based on their topics. Participating systems are expected to select one or more of the determined topics for each given article. In our system, we experiment with state-of-art pre-trained language models (GigaBERT-v4 and Arabic BERT) and a classical logistic regression to find the best effective model for the problem. We obtained the highest F1-score of 0.8563 with GigaBERT-v4 while Arabic-BERT and logistic regression reached 0.8442 and 0.8081 respectively. Our system ranked 2nd in the competition very close to the winner.
Sefamerve研发在ICICS 2021 Mowjaz多主题标签任务
本文描述了我们对ICICS 2021 Mowjaz多主题标签任务的贡献。任务的目的是根据题目对阿拉伯语文章进行分类。参与系统需要为每篇给定的文章选择一个或多个确定的主题。在我们的系统中,我们使用最先进的预训练语言模型(GigaBERT-v4和阿拉伯语BERT)和经典逻辑回归进行实验,以找到解决问题的最有效模型。我们使用GigaBERT-v4获得最高的f1得分0.8563,而Arabic-BERT和logistic回归分别达到0.8442和0.8081。我们的系统在比赛中排名第二,离冠军很近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信