Stochastic approximation for learning rate optimization for generalized relevance learning vector quantization

Daniel W. Steeneck, Trevor J. Bihl
{"title":"Stochastic approximation for learning rate optimization for generalized relevance learning vector quantization","authors":"Daniel W. Steeneck, Trevor J. Bihl","doi":"10.1109/NAECON.2017.8268804","DOIUrl":null,"url":null,"abstract":"Herein the authors apply the stochastic approximation method of Kiefer and Wolfowitz to optimize learning rate selection for Generalized Relevance Learning Vector Quantization — Improved (GRLVQI) neural networks with application to Z-Wave cyber-physical device identification. Recent work on full factorial models for GRLVQI optimal settings has shown promise, but is computationally costly and not feasible for large datasets. Results using stochastic optimization illustrate show fast convergence to high classification rates.","PeriodicalId":306091,"journal":{"name":"2017 IEEE National Aerospace and Electronics Conference (NAECON)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE National Aerospace and Electronics Conference (NAECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.2017.8268804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Herein the authors apply the stochastic approximation method of Kiefer and Wolfowitz to optimize learning rate selection for Generalized Relevance Learning Vector Quantization — Improved (GRLVQI) neural networks with application to Z-Wave cyber-physical device identification. Recent work on full factorial models for GRLVQI optimal settings has shown promise, but is computationally costly and not feasible for large datasets. Results using stochastic optimization illustrate show fast convergence to high classification rates.
广义相关学习向量量化中学习率优化的随机逼近
本文采用Kiefer和Wolfowitz的随机逼近方法优化广义相关学习向量量化改进(GRLVQI)神经网络的学习率选择,并将其应用于Z-Wave网络物理设备识别。最近对GRLVQI优化设置的全因子模型的研究显示出了希望,但计算成本高,对于大型数据集不可行。结果表明,随机优化算法收敛速度快,分类率高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信