{"title":"Modular labelled calculi for relevant logics","authors":"Fabio De Martin Polo","doi":"10.26686/ajl.v20i1.7990","DOIUrl":null,"url":null,"abstract":"\n \n \nIn this article, we perform a detailed proof theoretic investigation of a wide number of relevant logics by employing the well-established methodology of labelled sequent calculi to build our intended systems. At the semantic level, we will characterise relevant logics by employing reduced Routley-Meyer models, namely, relational structures with a ternary relation between worlds along with a unique distinct element considered as the real (or actual) world. This paper realizes the idea of building a variety of modular labelled calculi by reflecting, at the syntactic level, semantic informations taken from reduced Routley-Meyer models. Central results include proofs of soundness and completeness, as well as a proof of cut- admissibility. \n \n \n","PeriodicalId":367849,"journal":{"name":"The Australasian Journal of Logic","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Australasian Journal of Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26686/ajl.v20i1.7990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, we perform a detailed proof theoretic investigation of a wide number of relevant logics by employing the well-established methodology of labelled sequent calculi to build our intended systems. At the semantic level, we will characterise relevant logics by employing reduced Routley-Meyer models, namely, relational structures with a ternary relation between worlds along with a unique distinct element considered as the real (or actual) world. This paper realizes the idea of building a variety of modular labelled calculi by reflecting, at the syntactic level, semantic informations taken from reduced Routley-Meyer models. Central results include proofs of soundness and completeness, as well as a proof of cut- admissibility.