Dataset of Pages from Early Printed Books with Multiple Font Groups

Mathias Seuret, Saskia Limbach, Nikolaus Weichselbaumer, A. Maier, V. Christlein
{"title":"Dataset of Pages from Early Printed Books with Multiple Font Groups","authors":"Mathias Seuret, Saskia Limbach, Nikolaus Weichselbaumer, A. Maier, V. Christlein","doi":"10.1145/3352631.3352640","DOIUrl":null,"url":null,"abstract":"Based on contemporary scripts, early printers developed a large variety of different fonts. While fonts may slightly differ from one printer to another, they can be divided into font groups, such as Textura, Antiqua, or Fraktur. The recognition of font groups is important for computer scientists to select adequate OCR models, and of high interest to humanities scholars studying early printed books and the history of fonts. In this paper, we introduce a new, public dataset for the recognition of font groups in early printed books, and evaluate several state-of-the-art CNNs for the font group recognition task. The dataset consists of more than 35 600 page images, each page showing up to five different font groups, of which ten are considered in this dataset.","PeriodicalId":174440,"journal":{"name":"Proceedings of the 5th International Workshop on Historical Document Imaging and Processing","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International Workshop on Historical Document Imaging and Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3352631.3352640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Based on contemporary scripts, early printers developed a large variety of different fonts. While fonts may slightly differ from one printer to another, they can be divided into font groups, such as Textura, Antiqua, or Fraktur. The recognition of font groups is important for computer scientists to select adequate OCR models, and of high interest to humanities scholars studying early printed books and the history of fonts. In this paper, we introduce a new, public dataset for the recognition of font groups in early printed books, and evaluate several state-of-the-art CNNs for the font group recognition task. The dataset consists of more than 35 600 page images, each page showing up to five different font groups, of which ten are considered in this dataset.
具有多个字体组的早期印刷书籍的页面数据集
早期的印刷商以当时的文字为基础,开发了各种不同的字体。虽然不同打印机的字体可能略有不同,但它们可以分为字体组,如Textura、Antiqua或Fraktur。字体组的识别对于计算机科学家选择适当的OCR模型非常重要,也是研究早期印刷书籍和字体历史的人文学者的高度兴趣。在本文中,我们引入了一个新的公共数据集,用于识别早期印刷书籍中的字体组,并评估了几个最先进的cnn用于字体组识别任务。该数据集由超过35600个页面图像组成,每个页面最多显示5个不同的字体组,其中10个在这个数据集中被考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信