Khalid Been Md. Badruzzaman Biplob, Md. Hasan Imam Bijoy, Abu Kowshir Bitto, Aka Das, Amit Chowdhury, Sayed Md. Minhaz Hossain
{"title":"Suicidal Ratio Prediction Among the Continent of World: A Machine Learning Approach","authors":"Khalid Been Md. Badruzzaman Biplob, Md. Hasan Imam Bijoy, Abu Kowshir Bitto, Aka Das, Amit Chowdhury, Sayed Md. Minhaz Hossain","doi":"10.1109/ICAIA57370.2023.10169618","DOIUrl":null,"url":null,"abstract":"Suicide is a global health issue with significant negative effects. Individuals at risk of suicide often avoid seeking help due to stigma or fear of forced treatment, and those with mental illnesses, who make up the majority of suicide victims, may not be aware of their condition or risk. Detecting those at risk of suicide is a challenge for healthcare providers. However, advances in artificial intelligence (AI) may lead to the development of new suicide prediction technologies. This study used machine learning to predict suicide rates across different continents using six common classification algorithms: Stochastic Gradient Descent Classifier (SGDC), Random Forest Classifier (RFC), Gaussian Naive Bayes Classifier (GNBC), K-Neighbors Classifier (KNNC), Logistic Regression Classifier (LRC), and Linear Support Vector Classifier (LSVC). The KNNC algorithm had the highest training accuracy at 100%, and a 97% test accuracy. The RFC algorithm achieved the highest test accuracy at 99%, with a corresponding training accuracy of 99%.","PeriodicalId":196526,"journal":{"name":"2023 International Conference on Artificial Intelligence and Applications (ICAIA) Alliance Technology Conference (ATCON-1)","volume":"41 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Artificial Intelligence and Applications (ICAIA) Alliance Technology Conference (ATCON-1)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIA57370.2023.10169618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Suicide is a global health issue with significant negative effects. Individuals at risk of suicide often avoid seeking help due to stigma or fear of forced treatment, and those with mental illnesses, who make up the majority of suicide victims, may not be aware of their condition or risk. Detecting those at risk of suicide is a challenge for healthcare providers. However, advances in artificial intelligence (AI) may lead to the development of new suicide prediction technologies. This study used machine learning to predict suicide rates across different continents using six common classification algorithms: Stochastic Gradient Descent Classifier (SGDC), Random Forest Classifier (RFC), Gaussian Naive Bayes Classifier (GNBC), K-Neighbors Classifier (KNNC), Logistic Regression Classifier (LRC), and Linear Support Vector Classifier (LSVC). The KNNC algorithm had the highest training accuracy at 100%, and a 97% test accuracy. The RFC algorithm achieved the highest test accuracy at 99%, with a corresponding training accuracy of 99%.