{"title":"Pemodelan Matematika SEIRS Pada Penyebaran Penyakit Malaria di Kabupaten Mimika","authors":"Hisyam Ihsan, Syafruddin Side, Musdalifa Pagga","doi":"10.35580/JMATHCOS.V4I1.20446","DOIUrl":null,"url":null,"abstract":"Abstrak. Penelitian ini bertujuan untuk membangun model penyebaran pada penyakit malaria tipe SEIRS (Susceptible-Exposed- Infected- Recovered- Susceptible) dengan menambahkan parameter penanganan(pengobatan) pada kelas Exposed dan asumsi bahwa manusia yang pulih dapat rentan kembali terkena penyakit malaria. Model ini dibagi menjadi empat kelas yaitu, rentan, terinfeksi tapi belum aktif, terinfeksi, dan sembuh. Data yang digunakan adalah data jumlah penderita penyakit malaria dari Dinas Kesehatan Kabupaten Mimika tahun 2018. Model matematika tipe SEIRS digunakan untuk menentukan titik equilibrium. Berdasarkan hasil simulasi dari model SEIRS diperoleh bilangan reproduksi dasar sebesar 0,09 yang menandakan bahwa penyebaran penyakit malaria tidak menyebabkan orang lain terkena penyakit malaria.Kata Kunci: Titik Equilibrium, Bilangan Reproduksi Dasar, Malaria, Model SEIRSAbstract. This research aims to build a model of the spread of malaria diseases type SEIRS (Susceptible-Exposed-Infected-Recovered-Susceptible) by adding treatment parameters (treatment) in the Exposed class and the assumption that humans who recover can be vulnerable to malaria again. This model is divided into four classes namely, vulnerable, infected but not yet active, infected, and cured. The data used are data on the number of malaria sufferers from the Mimika District Health Office in 2018. The mathematical model of the type SEIRS is used to determine the equilibrium point. Based on the simulation results of the SEIRS model, the basic reproduction number (R0) of 0.09 indicates that the spread of malaria does not cause others to contract malaria.Keywords: Equilibrium Point, Basic Reproductive Numbers, Malaria, SEIRS Model","PeriodicalId":363413,"journal":{"name":"Journal of Mathematics Computations and Statistics","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics Computations and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35580/JMATHCOS.V4I1.20446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Abstrak. Penelitian ini bertujuan untuk membangun model penyebaran pada penyakit malaria tipe SEIRS (Susceptible-Exposed- Infected- Recovered- Susceptible) dengan menambahkan parameter penanganan(pengobatan) pada kelas Exposed dan asumsi bahwa manusia yang pulih dapat rentan kembali terkena penyakit malaria. Model ini dibagi menjadi empat kelas yaitu, rentan, terinfeksi tapi belum aktif, terinfeksi, dan sembuh. Data yang digunakan adalah data jumlah penderita penyakit malaria dari Dinas Kesehatan Kabupaten Mimika tahun 2018. Model matematika tipe SEIRS digunakan untuk menentukan titik equilibrium. Berdasarkan hasil simulasi dari model SEIRS diperoleh bilangan reproduksi dasar sebesar 0,09 yang menandakan bahwa penyebaran penyakit malaria tidak menyebabkan orang lain terkena penyakit malaria.Kata Kunci: Titik Equilibrium, Bilangan Reproduksi Dasar, Malaria, Model SEIRSAbstract. This research aims to build a model of the spread of malaria diseases type SEIRS (Susceptible-Exposed-Infected-Recovered-Susceptible) by adding treatment parameters (treatment) in the Exposed class and the assumption that humans who recover can be vulnerable to malaria again. This model is divided into four classes namely, vulnerable, infected but not yet active, infected, and cured. The data used are data on the number of malaria sufferers from the Mimika District Health Office in 2018. The mathematical model of the type SEIRS is used to determine the equilibrium point. Based on the simulation results of the SEIRS model, the basic reproduction number (R0) of 0.09 indicates that the spread of malaria does not cause others to contract malaria.Keywords: Equilibrium Point, Basic Reproductive Numbers, Malaria, SEIRS Model