Video Object Matting via Hierarchical Space-Time Semantic Guidance

Yumeng Wang, Bo Xu, Ziwen Li, Han Huang, Cheng Lu, Yandong Guo
{"title":"Video Object Matting via Hierarchical Space-Time Semantic Guidance","authors":"Yumeng Wang, Bo Xu, Ziwen Li, Han Huang, Cheng Lu, Yandong Guo","doi":"10.1109/WACV56688.2023.00509","DOIUrl":null,"url":null,"abstract":"Different from most existing approaches that require trimap generation for each frame, we reformulate video object matting (VOM) by introducing improved semantic guidance propagation. The proposed approach can achieve a higher degree of temporal coherence between frames with only a single coarse mask as a reference. In this paper, we adapt the hierarchical memory matching mechanism into the space-time baseline to build an efficient and robust framework for semantic guidance propagation and alpha prediction. To enhance the temporal smoothness, we also propose a cross-frame attention refinement (CFAR) module that can refine the feature representations across multiple adjacent frames (both historical and current frames) based on the spatio-temporal correlation among the cross- frame pixels. Extensive experiments demonstrate the effectiveness of hierarchical spatio-temporal semantic guidance and the cross-video-frame attention refinement module, and our model outperforms the state-of-the-art VOM methods. We also analyze the significance of different components in our model.","PeriodicalId":270631,"journal":{"name":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV56688.2023.00509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Different from most existing approaches that require trimap generation for each frame, we reformulate video object matting (VOM) by introducing improved semantic guidance propagation. The proposed approach can achieve a higher degree of temporal coherence between frames with only a single coarse mask as a reference. In this paper, we adapt the hierarchical memory matching mechanism into the space-time baseline to build an efficient and robust framework for semantic guidance propagation and alpha prediction. To enhance the temporal smoothness, we also propose a cross-frame attention refinement (CFAR) module that can refine the feature representations across multiple adjacent frames (both historical and current frames) based on the spatio-temporal correlation among the cross- frame pixels. Extensive experiments demonstrate the effectiveness of hierarchical spatio-temporal semantic guidance and the cross-video-frame attention refinement module, and our model outperforms the state-of-the-art VOM methods. We also analyze the significance of different components in our model.
基于分层时空语义制导的视频对象抠图
与大多数现有的需要为每帧生成三帧图的方法不同,我们通过引入改进的语义引导传播来重新表述视频对象抠图(VOM)。该方法只需要一个粗掩码作为参考,就可以实现帧间较高程度的时间相干性。在本文中,我们将层次记忆匹配机制引入到时空基线中,构建了一个高效、鲁棒的语义制导传播和α预测框架。为了增强时间平滑性,我们还提出了一个跨帧注意力细化(CFAR)模块,该模块可以基于跨帧像素之间的时空相关性来细化多个相邻帧(包括历史帧和当前帧)的特征表示。大量的实验证明了分层时空语义引导和跨视频帧注意力细化模块的有效性,并且我们的模型优于最先进的VOM方法。我们还分析了模型中不同组成部分的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信