Let Them Choose What They Want: A Multi-Task CNN Architecture Leveraging Mid-Level Deep Representations for Face Attribute Classification

Zhenduo Chen, Feng Liu, Zhenglai Zhao
{"title":"Let Them Choose What They Want: A Multi-Task CNN Architecture Leveraging Mid-Level Deep Representations for Face Attribute Classification","authors":"Zhenduo Chen, Feng Liu, Zhenglai Zhao","doi":"10.1109/ICIP42928.2021.9506456","DOIUrl":null,"url":null,"abstract":"Face Attributes Classification (FAC) is an important task in computer vision, aiming to predict the facial attributes of a given image. However, the value of mid-level feature information and the correlation between face attributes are always ignored by deep learning-based FAC methods. In order to solve these problems, we propose a novel and effective Multi-task CNN architecture. Instead of predicting all 40 attributes together, an attribute grouping strategy is proposed to divide the 40 attributes into 8 task groups correlatively. Meanwhile, through the Fusion Layer, mid-level deep representations are fused into the original feature representations to jointly predict the face attributes. Furthermore, the Task-unique Attention Modules can help learn more task-specific feature representations, obtaining higher FAC accuracy. Extensive experiments on the CelebA dataset demonstrate that our method outperforms state-of-the-art FAC methods.","PeriodicalId":314429,"journal":{"name":"2021 IEEE International Conference on Image Processing (ICIP)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP42928.2021.9506456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Face Attributes Classification (FAC) is an important task in computer vision, aiming to predict the facial attributes of a given image. However, the value of mid-level feature information and the correlation between face attributes are always ignored by deep learning-based FAC methods. In order to solve these problems, we propose a novel and effective Multi-task CNN architecture. Instead of predicting all 40 attributes together, an attribute grouping strategy is proposed to divide the 40 attributes into 8 task groups correlatively. Meanwhile, through the Fusion Layer, mid-level deep representations are fused into the original feature representations to jointly predict the face attributes. Furthermore, the Task-unique Attention Modules can help learn more task-specific feature representations, obtaining higher FAC accuracy. Extensive experiments on the CelebA dataset demonstrate that our method outperforms state-of-the-art FAC methods.
让他们选择他们想要的:一个利用中级深度表示进行人脸属性分类的多任务CNN架构
人脸属性分类(Face Attributes Classification, FAC)是计算机视觉中的一项重要任务,旨在预测给定图像的人脸属性。然而,基于深度学习的FAC方法往往忽略了中级特征信息的价值和人脸属性之间的相关性。为了解决这些问题,我们提出了一种新颖有效的多任务CNN架构。本文提出了一种属性分组策略,将40个属性相关地划分为8个任务组,而不是一起预测所有40个属性。同时,通过融合层将中级深度表征融合到原始特征表征中,共同预测人脸属性。此外,任务唯一注意模块可以帮助学习更多的任务特定特征表示,从而获得更高的FAC准确性。在CelebA数据集上进行的大量实验表明,我们的方法优于最先进的FAC方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信