Virtual dimensionality estimation for hyperspectral imagery with a fractal-based method

Q. Du
{"title":"Virtual dimensionality estimation for hyperspectral imagery with a fractal-based method","authors":"Q. Du","doi":"10.1109/WHISPERS.2010.5594955","DOIUrl":null,"url":null,"abstract":"The Grassberger-Procaccia (GP) algorithm is investigated in estimating ID of hyperspectral imagery. Due to the high data dimensionality and large pairwise pixel distance, data dimensionality may need to be pre-reduced such that the trade-off can be achieved between taking the scale r small enough to have an accurate estimate and taking the r sufficiently large to reduce statistical errors due to lack of data counts. Since random projection can preserve volumes and distances to affine spaces, it is a good choice to run the GP algorithm on the random projected data points. Based on real data experiments, the GP algorithm provides estimates that are close to virtual dimensionality (VD) estimates from other VD estimation approaches.","PeriodicalId":193944,"journal":{"name":"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2010.5594955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The Grassberger-Procaccia (GP) algorithm is investigated in estimating ID of hyperspectral imagery. Due to the high data dimensionality and large pairwise pixel distance, data dimensionality may need to be pre-reduced such that the trade-off can be achieved between taking the scale r small enough to have an accurate estimate and taking the r sufficiently large to reduce statistical errors due to lack of data counts. Since random projection can preserve volumes and distances to affine spaces, it is a good choice to run the GP algorithm on the random projected data points. Based on real data experiments, the GP algorithm provides estimates that are close to virtual dimensionality (VD) estimates from other VD estimation approaches.
基于分形的高光谱图像虚拟维数估计方法
研究了基于GP (Grassberger-Procaccia)的高光谱图像ID估计算法。由于数据维数高,两两像素距离大,因此可能需要预先降低数据维数,以便在将尺度r取得足够小以获得准确估计和将r取得足够大以减少由于缺乏数据计数而导致的统计误差之间实现权衡。由于随机投影可以保留仿射空间的体积和距离,因此在随机投影的数据点上运行GP算法是一个很好的选择。基于实际数据实验,GP算法提供了接近其他VD估计方法的虚拟维数(VD)估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信