Precursor Selection for Carbon Membrane Fabrication: A Review

N. Sazali, W. Salleh, M. N. Izwanne, Z. Harun, K. Kadirgama
{"title":"Precursor Selection for Carbon Membrane Fabrication: A Review","authors":"N. Sazali, W. Salleh, M. N. Izwanne, Z. Harun, K. Kadirgama","doi":"10.11113/AMST.V22N2.122","DOIUrl":null,"url":null,"abstract":"The rapid expansion of gas separation technology since it was first introduced is promoted by the beneficial selective permeability capability of the polymeric membranes. Up to the currently available information, a large number of studies have reported polymeric membranes permeability and selectivity performances for a different type of gasses. However, trends showed that separation of gases using as per in synthesized polymers had reached a bottlenecks performance limits. Due to this reason, membranes in the form of asymmetric and composite structures is seen as an interesting option of membrane modification to improve the performance and economic value of the membranes alongside with an introduction of new processes to the field. An introduction of new polymers during membrane fabrication leads to a formation of its unique structure depending on the polymers. Thus, structured studies are needed to determine the kinetic behavior of the new addition to membrane structures. This review examines the ongoing progress made in understanding the effects of the different polymers additives to the structural modification and the gas separation performances of the carbon membranes. A reduction of defects consisted of pore holes, and cracks on carbon membranes could be minimized with the right selection of polymer precursor.","PeriodicalId":326334,"journal":{"name":"Journal of Applied Membrane Science & Technology","volume":"307 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Membrane Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/AMST.V22N2.122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

The rapid expansion of gas separation technology since it was first introduced is promoted by the beneficial selective permeability capability of the polymeric membranes. Up to the currently available information, a large number of studies have reported polymeric membranes permeability and selectivity performances for a different type of gasses. However, trends showed that separation of gases using as per in synthesized polymers had reached a bottlenecks performance limits. Due to this reason, membranes in the form of asymmetric and composite structures is seen as an interesting option of membrane modification to improve the performance and economic value of the membranes alongside with an introduction of new processes to the field. An introduction of new polymers during membrane fabrication leads to a formation of its unique structure depending on the polymers. Thus, structured studies are needed to determine the kinetic behavior of the new addition to membrane structures. This review examines the ongoing progress made in understanding the effects of the different polymers additives to the structural modification and the gas separation performances of the carbon membranes. A reduction of defects consisted of pore holes, and cracks on carbon membranes could be minimized with the right selection of polymer precursor.
碳膜制备前驱体的选择研究进展
自气体分离技术问世以来,其迅速发展得益于聚合物膜有利的选择性渗透能力。截至目前,已有大量研究报道了聚合物膜对不同类型气体的渗透性和选择性。然而,趋势表明,在合成聚合物中使用的气体分离已经达到了性能限制的瓶颈。由于这个原因,不对称和复合结构的膜被视为膜改性的一个有趣的选择,以提高膜的性能和经济价值,同时引入新的工艺到该领域。在膜制造过程中引入新的聚合物导致其独特结构的形成取决于聚合物。因此,需要进行结构研究来确定膜结构中新添加物的动力学行为。本文综述了不同聚合物添加剂对碳膜结构改性和气体分离性能影响的研究进展。通过正确选择聚合物前驱体,可以最大限度地减少碳膜上由孔洞和裂纹组成的缺陷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信