{"title":"Fairness and Data Protection Impact Assessments","authors":"A. Kasirzadeh, Damian Clifford","doi":"10.1145/3461702.3462528","DOIUrl":null,"url":null,"abstract":"In this paper, we critically examine the effectiveness of the requirement to conduct a Data Protection Impact Assessment (DPIA) in Article 35 of the General Data Protection Regulation (GDPR) in light of fairness metrics. Through this analysis, we explore the role of the fairness principle as introduced in Article 5(1)(a) and its multifaceted interpretation in the obligation to conduct a DPIA. Our paper argues that although there is a significant theoretical role for the considerations of fairness in the DPIA process, an analysis of the various guidance documents issued by data protection authorities on the obligation to conduct a DPIA reveals that they rarely mention the fairness principle in practice. Our analysis questions this omission, and assesses the capacity of fairness metrics to be truly operationalized within DPIAs. We conclude by exploring the practical effectiveness of DPIA with particular reference to (1) technical challenges that have an impact on the usefulness of DPIAs irrespective of a controller's willingness to actively engage in the process, (2) the context dependent nature of the fairness principle, and (3) the key role played by data controllers in the determination of what is fair.","PeriodicalId":197336,"journal":{"name":"Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3461702.3462528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
In this paper, we critically examine the effectiveness of the requirement to conduct a Data Protection Impact Assessment (DPIA) in Article 35 of the General Data Protection Regulation (GDPR) in light of fairness metrics. Through this analysis, we explore the role of the fairness principle as introduced in Article 5(1)(a) and its multifaceted interpretation in the obligation to conduct a DPIA. Our paper argues that although there is a significant theoretical role for the considerations of fairness in the DPIA process, an analysis of the various guidance documents issued by data protection authorities on the obligation to conduct a DPIA reveals that they rarely mention the fairness principle in practice. Our analysis questions this omission, and assesses the capacity of fairness metrics to be truly operationalized within DPIAs. We conclude by exploring the practical effectiveness of DPIA with particular reference to (1) technical challenges that have an impact on the usefulness of DPIAs irrespective of a controller's willingness to actively engage in the process, (2) the context dependent nature of the fairness principle, and (3) the key role played by data controllers in the determination of what is fair.