{"title":"A novel combination of negative and positive selection in Artificial Immune Systems","authors":"Van Truong Nguyen, N. X. Hoai, C. Luong","doi":"10.1109/RIVF.2013.6719857","DOIUrl":null,"url":null,"abstract":"Artificial Immune System (AIS) is a multidisciplinary research area that combines the principles of immunology and computation. Negative Selection Algorithms (NSA) is one of the most popular models of AIS mainly designed for one-class learning problems such as anomaly detection [1]. Positive Selection Algorithms (PSA) is the twin brother of NSA with similar performance for AIS [2]. Both NSAs and PSAs comprise of two phases: generating a set D of detectors from a given set S of selves (detector generation phase); and then detecting if a given cell (new data instance) is self or non-self using the generated detector set (detection phase). In this paper, we propose a novel approach to combining NSAs and PSAs that employ binary representation and r-chunk matching rule. The new algorithm achieves smaller detector storage complexity and potentially better detection time in comparison with single NSAs or PSAs.","PeriodicalId":121216,"journal":{"name":"The 2013 RIVF International Conference on Computing & Communication Technologies - Research, Innovation, and Vision for Future (RIVF)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2013 RIVF International Conference on Computing & Communication Technologies - Research, Innovation, and Vision for Future (RIVF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RIVF.2013.6719857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Artificial Immune System (AIS) is a multidisciplinary research area that combines the principles of immunology and computation. Negative Selection Algorithms (NSA) is one of the most popular models of AIS mainly designed for one-class learning problems such as anomaly detection [1]. Positive Selection Algorithms (PSA) is the twin brother of NSA with similar performance for AIS [2]. Both NSAs and PSAs comprise of two phases: generating a set D of detectors from a given set S of selves (detector generation phase); and then detecting if a given cell (new data instance) is self or non-self using the generated detector set (detection phase). In this paper, we propose a novel approach to combining NSAs and PSAs that employ binary representation and r-chunk matching rule. The new algorithm achieves smaller detector storage complexity and potentially better detection time in comparison with single NSAs or PSAs.