A novel combination of negative and positive selection in Artificial Immune Systems

Van Truong Nguyen, N. X. Hoai, C. Luong
{"title":"A novel combination of negative and positive selection in Artificial Immune Systems","authors":"Van Truong Nguyen, N. X. Hoai, C. Luong","doi":"10.1109/RIVF.2013.6719857","DOIUrl":null,"url":null,"abstract":"Artificial Immune System (AIS) is a multidisciplinary research area that combines the principles of immunology and computation. Negative Selection Algorithms (NSA) is one of the most popular models of AIS mainly designed for one-class learning problems such as anomaly detection [1]. Positive Selection Algorithms (PSA) is the twin brother of NSA with similar performance for AIS [2]. Both NSAs and PSAs comprise of two phases: generating a set D of detectors from a given set S of selves (detector generation phase); and then detecting if a given cell (new data instance) is self or non-self using the generated detector set (detection phase). In this paper, we propose a novel approach to combining NSAs and PSAs that employ binary representation and r-chunk matching rule. The new algorithm achieves smaller detector storage complexity and potentially better detection time in comparison with single NSAs or PSAs.","PeriodicalId":121216,"journal":{"name":"The 2013 RIVF International Conference on Computing & Communication Technologies - Research, Innovation, and Vision for Future (RIVF)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2013 RIVF International Conference on Computing & Communication Technologies - Research, Innovation, and Vision for Future (RIVF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RIVF.2013.6719857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Artificial Immune System (AIS) is a multidisciplinary research area that combines the principles of immunology and computation. Negative Selection Algorithms (NSA) is one of the most popular models of AIS mainly designed for one-class learning problems such as anomaly detection [1]. Positive Selection Algorithms (PSA) is the twin brother of NSA with similar performance for AIS [2]. Both NSAs and PSAs comprise of two phases: generating a set D of detectors from a given set S of selves (detector generation phase); and then detecting if a given cell (new data instance) is self or non-self using the generated detector set (detection phase). In this paper, we propose a novel approach to combining NSAs and PSAs that employ binary representation and r-chunk matching rule. The new algorithm achieves smaller detector storage complexity and potentially better detection time in comparison with single NSAs or PSAs.
人工免疫系统中消极选择和积极选择的新组合
人工免疫系统(Artificial Immune System, AIS)是一个结合免疫学原理和计算原理的多学科研究领域。负选择算法(Negative Selection Algorithms, NSA)是目前最流行的人工智能模型之一,主要针对异常检测[1]等一类学习问题而设计。正选择算法(PSA)是NSA的孪生兄弟,在AIS[2]中具有相似的性能。NSAs和psa都包括两个阶段:从给定的S个自集合生成一组D个检测器(检测器生成阶段);然后使用生成的检测器集检测给定单元格(新数据实例)是自我还是非自我(检测阶段)。本文提出了一种利用二进制表示和r-chunk匹配规则将nsa和psa结合起来的新方法。与单个NSAs或psa相比,新算法实现了更小的检测器存储复杂度和更好的检测时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信