Classification of MathML Expressions Using Multilayer Perceptron

Yuma Nagao, Nobutaka Suzuki
{"title":"Classification of MathML Expressions Using Multilayer Perceptron","authors":"Yuma Nagao, Nobutaka Suzuki","doi":"10.1145/3103010.3121026","DOIUrl":null,"url":null,"abstract":"MathML consists of two sets of elements: Presentation Markup and Content Markup. The former is more widely used to display math expressions in Web pages, while the latter is more suited to the calculation of math expressions. In this paper, we consider classifying math expressions in Presentation Markup. In general, a math expression in Presentation Markup cannot be uniquely converted into the corresponding expression in Content Markup. If the class of a given math expression can be identified automatically, such conversions can be done more appropriately. Moreover, identifying the class of a given math expression is useful for text-to-speech of math expression. In this paper, we propose a method for classifying math expressions in Presentation Markup by using a kind of deep learning; multilayer perceptron. Experimental results show that our method classifies math expressions with high accuracy.","PeriodicalId":200469,"journal":{"name":"Proceedings of the 2017 ACM Symposium on Document Engineering","volume":"400 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM Symposium on Document Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3103010.3121026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

MathML consists of two sets of elements: Presentation Markup and Content Markup. The former is more widely used to display math expressions in Web pages, while the latter is more suited to the calculation of math expressions. In this paper, we consider classifying math expressions in Presentation Markup. In general, a math expression in Presentation Markup cannot be uniquely converted into the corresponding expression in Content Markup. If the class of a given math expression can be identified automatically, such conversions can be done more appropriately. Moreover, identifying the class of a given math expression is useful for text-to-speech of math expression. In this paper, we propose a method for classifying math expressions in Presentation Markup by using a kind of deep learning; multilayer perceptron. Experimental results show that our method classifies math expressions with high accuracy.
基于多层感知机的MathML表达式分类
MathML由两组元素组成:表示标记和内容标记。前者更广泛地用于在Web页面中显示数学表达式,而后者更适合于数学表达式的计算。本文研究了表示标记中数学表达式的分类问题。一般来说,Presentation Markup中的数学表达式不能唯一地转换为Content Markup中的相应表达式。如果可以自动识别给定数学表达式的类,则可以更适当地进行此类转换。此外,识别给定数学表达式的类对于数学表达式的文本到语音转换是有用的。本文提出了一种基于深度学习的表示标记数学表达式分类方法;多层感知器。实验结果表明,该方法具有较高的数学表达式分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信