Acceleration of Grammatical Evolution with Multiple Chromosome by Using Stochastic Schemata Exploiter

E. Kita, Y. Zuo, H. Sugiura, T. Mizuno
{"title":"Acceleration of Grammatical Evolution with Multiple Chromosome by Using Stochastic Schemata Exploiter","authors":"E. Kita, Y. Zuo, H. Sugiura, T. Mizuno","doi":"10.1109/MCSI.2017.40","DOIUrl":null,"url":null,"abstract":"Grammatical Evolution (GE), which is one of evolutionary computations, is designed to find the function or the executable program or program fragment that satisfies the design objective. Candidate solutions are described in bit-string or the set of decimal numbers. The translation process from the genotype (bit-string) to the phenotype (function or program) is defined in the list of the translation rules. Candidate solutions are evolved according to the Simple Genetic Algorithm. There are three issues in Grammatical Evolution process; genotype definition, translation rules, and search algorithm. Grammatical Evolution with Multiple Chromosomes (GEMC) is designed for improving the genotype definition. The aim of this study is to improve the search algorithm from Simple Genetic Algorithm to Stochastic Schemata Exploiter for improving the convergence speed. The proposal algorithm “Grammatical Evolution with Multiple Chromosome by Using Stochastic Schemata Exploiter (GEMC-SSE)” is applied for the symbolic regression problem in order to discuss the search performance. The numerical results show that the proposal algorithm has faster convergence speed than the original GEMC.","PeriodicalId":113351,"journal":{"name":"2017 Fourth International Conference on Mathematics and Computers in Sciences and in Industry (MCSI)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Fourth International Conference on Mathematics and Computers in Sciences and in Industry (MCSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCSI.2017.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Grammatical Evolution (GE), which is one of evolutionary computations, is designed to find the function or the executable program or program fragment that satisfies the design objective. Candidate solutions are described in bit-string or the set of decimal numbers. The translation process from the genotype (bit-string) to the phenotype (function or program) is defined in the list of the translation rules. Candidate solutions are evolved according to the Simple Genetic Algorithm. There are three issues in Grammatical Evolution process; genotype definition, translation rules, and search algorithm. Grammatical Evolution with Multiple Chromosomes (GEMC) is designed for improving the genotype definition. The aim of this study is to improve the search algorithm from Simple Genetic Algorithm to Stochastic Schemata Exploiter for improving the convergence speed. The proposal algorithm “Grammatical Evolution with Multiple Chromosome by Using Stochastic Schemata Exploiter (GEMC-SSE)” is applied for the symbolic regression problem in order to discuss the search performance. The numerical results show that the proposal algorithm has faster convergence speed than the original GEMC.
利用随机模式挖掘器加速多染色体语法演化
语法进化(GE)是进化计算的一种,其目的是寻找满足设计目标的功能或可执行程序或程序片段。候选解用位串或十进制数集来描述。翻译规则列表中定义了从基因型(位串)到表型(功能或程序)的翻译过程。根据简单遗传算法对候选解进行演化。语法演变过程中存在三个问题;基因型定义、翻译规则和搜索算法。多染色体语法进化(GEMC)是为改进基因型定义而设计的。本研究的目的是将搜索算法从简单遗传算法改进为随机模式挖掘算法,以提高收敛速度。针对符号回归问题,提出了“基于随机模式挖掘器的多染色体语法进化”算法,探讨了该算法的搜索性能。数值结果表明,该算法的收敛速度比原算法快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信