MPG Prediction based on BP Neural Network

Jung Meng, Xiangyin Liu
{"title":"MPG Prediction based on BP Neural Network","authors":"Jung Meng, Xiangyin Liu","doi":"10.1109/ICIEA.2006.257357","DOIUrl":null,"url":null,"abstract":"In this article, we use the data mining theory to construct a BP neural network model to predict MPG (mile per gallon). Based on the nonlinear properties of the six variables given, considering the imperfection using two main variables at the same time, we've processed the problem via data preparation, model selection, construction, modification and error comparison as well as model adaption period. At the end of this article, we've discussed the principles of acquiring proper parameters based on the distinctions of the neural network chosen and give some possible improving directions. In this manner, in case the original data is given, the predicted MPG result comes out automatically and satisfactorily","PeriodicalId":115435,"journal":{"name":"2006 1ST IEEE Conference on Industrial Electronics and Applications","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 1ST IEEE Conference on Industrial Electronics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2006.257357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this article, we use the data mining theory to construct a BP neural network model to predict MPG (mile per gallon). Based on the nonlinear properties of the six variables given, considering the imperfection using two main variables at the same time, we've processed the problem via data preparation, model selection, construction, modification and error comparison as well as model adaption period. At the end of this article, we've discussed the principles of acquiring proper parameters based on the distinctions of the neural network chosen and give some possible improving directions. In this manner, in case the original data is given, the predicted MPG result comes out automatically and satisfactorily
基于BP神经网络的MPG预测
在本文中,我们使用数据挖掘理论构建了一个BP神经网络模型来预测MPG(每加仑英里)。根据给出的六个变量的非线性性质,考虑到同时使用两个主要变量的不完备性,我们从数据准备、模型选择、构建、修正和误差比较以及模型适应期四个方面对问题进行了处理。本文最后根据所选神经网络的不同,讨论了获取合适参数的原则,并提出了可能的改进方向。这样,在给定原始数据的情况下,可以自动得到令人满意的MPG预测结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信