A comparison of feature selection approach between greedy, IG-ratio, Chi-square, and mRMR in educational mining

Nachirat Rachburee, Wattana Punlumjeak
{"title":"A comparison of feature selection approach between greedy, IG-ratio, Chi-square, and mRMR in educational mining","authors":"Nachirat Rachburee, Wattana Punlumjeak","doi":"10.1109/ICITEED.2015.7408983","DOIUrl":null,"url":null,"abstract":"Educational data mining is a widely interesting issue in data mining research field. One of the topics is feature selection method to reduce a feature set. The main purpose of this study is to compare feature selection methods for the efficiency of student performance prediction improvement. In this research, we proposed 4 feature selection methods: greedy algorithm, Information gain ratio, chi-square, and mRMR that combine with 4 classification models. The example data were 6,882 engineering students in Rajamangala University of Technology Thanyaburi, Thailand from year 2004 to 2010. The experiments demonstrate the effectiveness of the feature selection method in classification of student performance prediction. The result shows that greedy forward selection with neural network classification model presents the best efficiency couple with 91.16% accuracy.","PeriodicalId":207985,"journal":{"name":"2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITEED.2015.7408983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

Abstract

Educational data mining is a widely interesting issue in data mining research field. One of the topics is feature selection method to reduce a feature set. The main purpose of this study is to compare feature selection methods for the efficiency of student performance prediction improvement. In this research, we proposed 4 feature selection methods: greedy algorithm, Information gain ratio, chi-square, and mRMR that combine with 4 classification models. The example data were 6,882 engineering students in Rajamangala University of Technology Thanyaburi, Thailand from year 2004 to 2010. The experiments demonstrate the effectiveness of the feature selection method in classification of student performance prediction. The result shows that greedy forward selection with neural network classification model presents the best efficiency couple with 91.16% accuracy.
教育挖掘中贪心、IG-ratio、卡方和mRMR特征选择方法的比较
教育数据挖掘是数据挖掘研究领域中一个备受关注的问题。其中一个主题是特征选择方法,以减少特征集。本研究的主要目的是比较特征选择方法对学生成绩预测改进的效率。在本研究中,我们结合4种分类模型,提出了贪心算法、信息增益比、卡方和mRMR 4种特征选择方法。示例数据是2004年至2010年泰国曼谷拉贾曼加拉理工大学的6,882名工程专业学生。实验证明了特征选择方法在学生成绩预测分类中的有效性。结果表明,贪心前向选择与神经网络分类模型的结合效率最高,准确率为91.16%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信