{"title":"Coxeter Groups and Random Groups","authors":"Danny Calegari","doi":"10.1515/9780691185897-005","DOIUrl":null,"url":null,"abstract":"For every dimension d, there is an infinite family of convex co-compact reflection groups of isometries of hyperbolic d-space --- the superideal (simplicial and cubical) reflection groups --- with the property that a random group at any density less than a half (or in the few relators model) contains quasiconvex subgroups commensurable with some member of the family, with overwhelming probability.","PeriodicalId":404905,"journal":{"name":"What's Next?","volume":"438 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"What's Next?","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/9780691185897-005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
For every dimension d, there is an infinite family of convex co-compact reflection groups of isometries of hyperbolic d-space --- the superideal (simplicial and cubical) reflection groups --- with the property that a random group at any density less than a half (or in the few relators model) contains quasiconvex subgroups commensurable with some member of the family, with overwhelming probability.