Automatic assessment of voice signals according to the GRBAS scale using modulation spectra, Mel frequency Cepstral Coefficients and Noise parameters

T. Villa-Cañas, J. Orozco-Arroyave, J. D. Arias-Londoño, J. Vargas-Bonilla, J. Godino-Llorente
{"title":"Automatic assessment of voice signals according to the GRBAS scale using modulation spectra, Mel frequency Cepstral Coefficients and Noise parameters","authors":"T. Villa-Cañas, J. Orozco-Arroyave, J. D. Arias-Londoño, J. Vargas-Bonilla, J. Godino-Llorente","doi":"10.1109/STSIVA.2013.6644930","DOIUrl":null,"url":null,"abstract":"This paper presents a system for the automatic assessment of voice quality, according to the GRBAS scale, which considers different speech measures. The set of features includes the centroids and the energy content of different frequency bands in the modulation spectra of the recordings, Mel-frequency Cepstral Coefficients, Harmonics to Noise Ratio, Normalizes Noise Energy and Glottal to Noise Excitation Ratio. Additionally, with the aim of eliminate possible redundance in the information provided by the features, two different feature extraction techniques are applied, Principal Component Analysis and Linear Discriminant Analysis. The multiclass classification is done by means of K Nearest Neighbors classifier. The performance of the system is measured in terms of efficiency and statistical agreement index Kappa. The results show that this approach provides acceptable results for this purpose, with the best efficiency around 89.3% for Asthenia (A).","PeriodicalId":359994,"journal":{"name":"Symposium of Signals, Images and Artificial Vision - 2013: STSIVA - 2013","volume":"601 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium of Signals, Images and Artificial Vision - 2013: STSIVA - 2013","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STSIVA.2013.6644930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper presents a system for the automatic assessment of voice quality, according to the GRBAS scale, which considers different speech measures. The set of features includes the centroids and the energy content of different frequency bands in the modulation spectra of the recordings, Mel-frequency Cepstral Coefficients, Harmonics to Noise Ratio, Normalizes Noise Energy and Glottal to Noise Excitation Ratio. Additionally, with the aim of eliminate possible redundance in the information provided by the features, two different feature extraction techniques are applied, Principal Component Analysis and Linear Discriminant Analysis. The multiclass classification is done by means of K Nearest Neighbors classifier. The performance of the system is measured in terms of efficiency and statistical agreement index Kappa. The results show that this approach provides acceptable results for this purpose, with the best efficiency around 89.3% for Asthenia (A).
根据GRBAS尺度使用调制频谱,Mel频率倒谱系数和噪声参数自动评估语音信号
本文提出了一种基于GRBAS的语音质量自动评估系统,该系统考虑了不同的语音度量。特征集包括录音调制谱中不同频带的质心和能量含量、mel频倒谱系数、谐波噪声比、归一化噪声能量和声门噪声激励比。此外,为了消除特征提供的信息中可能存在的冗余,应用了两种不同的特征提取技术,主成分分析和线性判别分析。采用K近邻分类器进行多类分类。系统的性能以效率和统计一致性指数Kappa来衡量。结果表明,该方法在此目的上提供了可接受的结果,对Asthenia (A)的最佳效率约为89.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信