Meromorphic functions on compact Riemann surfaces and value sharing

E. Ballico
{"title":"Meromorphic functions on compact Riemann surfaces and value sharing","authors":"E. Ballico","doi":"10.1080/02781070500303247","DOIUrl":null,"url":null,"abstract":"Let X be a smooth and connected Riemann surface of genus g 0 and f: X P1, h: X P1 non-constant meromorphic functions on X. Fix an integer n 4 and assume the existence of n distinct points a1, , an P1 such that [image omitted] (set-theoretically) for every i. Here we prove that either f = h or [image omitted].","PeriodicalId":272508,"journal":{"name":"Complex Variables, Theory and Application: An International Journal","volume":"153 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Variables, Theory and Application: An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02781070500303247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Let X be a smooth and connected Riemann surface of genus g 0 and f: X P1, h: X P1 non-constant meromorphic functions on X. Fix an integer n 4 and assume the existence of n distinct points a1, , an P1 such that [image omitted] (set-theoretically) for every i. Here we prove that either f = h or [image omitted].
紧Riemann曲面上的亚纯函数与值共享
设X是X上的g属和f: X P1, h: X P1的光滑连通黎曼曲面。固定一个整数n 4,并假设存在n个不同的点a1,,和P1,使得[图像省略](集合理论)对每一个i。这里我们证明了f = h或[图像省略]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信