J. Feigenbaum, Sampath Kannan, M. Strauss, Mahesh Viswanathan
{"title":"An approximate L/sup 1/-difference algorithm for massive data streams","authors":"J. Feigenbaum, Sampath Kannan, M. Strauss, Mahesh Viswanathan","doi":"10.1109/SFFCS.1999.814623","DOIUrl":null,"url":null,"abstract":"We give a space-efficient, one-pass algorithm for approximating the L/sup 1/ difference /spl Sigma//sub i/|a/sub i/-b/sub i/| between two functions, when the function values a/sub i/ and b/sub i/ are given as data streams, and their order is chosen by an adversary. Our main technical innovation is a method of constructing families {V/sub j/} of limited independence random variables that are range summable by which we mean that /spl Sigma//sub j=0//sup c-1/ V/sub j/(s) is computable in time polylog(c), for all seeds s. These random variable families may be of interest outside our current application domain, i.e., massive data streams generated by communication networks. Our L/sup 1/-difference algorithm can be viewed as a \"sketching\" algorithm, in the sense of (A. Broder et al., 1998), and our algorithm performs better than that of Broder et al., when used to approximate the symmetric difference of two sets with small symmetric difference.","PeriodicalId":385047,"journal":{"name":"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFFCS.1999.814623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
We give a space-efficient, one-pass algorithm for approximating the L/sup 1/ difference /spl Sigma//sub i/|a/sub i/-b/sub i/| between two functions, when the function values a/sub i/ and b/sub i/ are given as data streams, and their order is chosen by an adversary. Our main technical innovation is a method of constructing families {V/sub j/} of limited independence random variables that are range summable by which we mean that /spl Sigma//sub j=0//sup c-1/ V/sub j/(s) is computable in time polylog(c), for all seeds s. These random variable families may be of interest outside our current application domain, i.e., massive data streams generated by communication networks. Our L/sup 1/-difference algorithm can be viewed as a "sketching" algorithm, in the sense of (A. Broder et al., 1998), and our algorithm performs better than that of Broder et al., when used to approximate the symmetric difference of two sets with small symmetric difference.