IMPLEMENTASI DATA MINING TERHADAP DATA PENJUALAN PADA INDUSTRI KULINER MENGGUNAKAN ALGORITMA FP-GROWTH

Inayatul Afriyani, Irfan Ali
{"title":"IMPLEMENTASI DATA MINING TERHADAP DATA PENJUALAN PADA INDUSTRI KULINER MENGGUNAKAN ALGORITMA FP-GROWTH","authors":"Inayatul Afriyani, Irfan Ali","doi":"10.30587/e-link.v18i1.5340","DOIUrl":null,"url":null,"abstract":"PT Aneka Selera Nusantara merupakan restoran yang bergerak di bidang kuliner, khususnya seafood dengan menu spesial berbahan dasar seafood segar. Masalah yang dihadapi oleh perusahaan adalah banyaknya pesanan dari konsumen yang berbeda, seringkali data transaksi hanya digunakan untuk pengarsipan. Untuk mengatasi masalah ini, teknik data mining digunakan untuk mengekstraksi informasi dari pola data transaksi penjualan dengan tujuan mengelola data yang besar. Salah satu teknik data mining yang digunakan adalah aturan asosiasi. Aturan asosiasi digunakan untuk menemukan aturan hubungan antara kombinasi itemset. Algoritma FP-Growth digunakan dalam pembangunan frequent itemset, dimana algoritma ini menggunakan struktur data tree atau FP-Tree, sehingga hasil dari frequent itemset dapat langsung diketahui. Hasil pengujian, aturan asosiasi menemukan produk yang dibeli secara bersamaan pada saat yang sama dengan nilai Support dan Confidence tertinggi, yaitu: jika konsumen membeli barakuda bakar acar dan sweet hot tea, maka dipastikan 100% konsumen juga akan membeli nasi putih dengan nilai Support 44%. Jika konsumen membeli original hot tea, kangkung balacan, dan udang pasir mas, maka dipastikan 100% konsumen juga akan membeli nasi putih dengan nilai Support 38%.","PeriodicalId":421293,"journal":{"name":"E-Link: Jurnal Teknik Elektro dan Informatika","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"E-Link: Jurnal Teknik Elektro dan Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30587/e-link.v18i1.5340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

PT Aneka Selera Nusantara merupakan restoran yang bergerak di bidang kuliner, khususnya seafood dengan menu spesial berbahan dasar seafood segar. Masalah yang dihadapi oleh perusahaan adalah banyaknya pesanan dari konsumen yang berbeda, seringkali data transaksi hanya digunakan untuk pengarsipan. Untuk mengatasi masalah ini, teknik data mining digunakan untuk mengekstraksi informasi dari pola data transaksi penjualan dengan tujuan mengelola data yang besar. Salah satu teknik data mining yang digunakan adalah aturan asosiasi. Aturan asosiasi digunakan untuk menemukan aturan hubungan antara kombinasi itemset. Algoritma FP-Growth digunakan dalam pembangunan frequent itemset, dimana algoritma ini menggunakan struktur data tree atau FP-Tree, sehingga hasil dari frequent itemset dapat langsung diketahui. Hasil pengujian, aturan asosiasi menemukan produk yang dibeli secara bersamaan pada saat yang sama dengan nilai Support dan Confidence tertinggi, yaitu: jika konsumen membeli barakuda bakar acar dan sweet hot tea, maka dipastikan 100% konsumen juga akan membeli nasi putih dengan nilai Support 44%. Jika konsumen membeli original hot tea, kangkung balacan, dan udang pasir mas, maka dipastikan 100% konsumen juga akan membeli nasi putih dengan nilai Support 38%.
PT系列的Nusantara风味餐厅是一家烹饪餐厅,尤其是具有新鲜海鲜基础菜单的海鲜。公司面临的问题是不同消费者的订单数量,交易数据往往只用于存档。为了解决这个问题,数据挖掘技术被用来从销售交易数据模式中提取信息,以管理大数据。使用的数据挖掘技术之一是协会规则。协会规则用来发现元素组合之间的关系规则。FP-Growth算法用于构建革位itemset,其中使用了树数据结构或FP-Tree数据,从而立即确定了频率列表的结果。测试结果,协会规则发现产品是在同期购买的,其支持价值最高,也就是:如果消费者购买的barakuda烘焙泡菜和甜热茶,那么100%的消费者肯定也会购买价值为44%的白米饭。如果消费者购买原始热茶、袋鼠balacan和沙虾,确保100%的消费者也会购买价值38%的白米饭。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信