The next frontier for strapdown RLG inertial systems. Precision navigation

R. Upton, W. Miller
{"title":"The next frontier for strapdown RLG inertial systems. Precision navigation","authors":"R. Upton, W. Miller","doi":"10.1109/PLANS.1990.66225","DOIUrl":null,"url":null,"abstract":"Honeywell research and development projects directed at improvements in the design, building, and testing of RLG (ring laser gyro) strapdown systems are reviewed. Some of the performance standards being set with current hardware are discussed, as are a number of the known error sources existing in these systems along with candidate solutions, the analysis and test results upon which precision navigation performance projections are based, and plans to demonstrate the feasibility of a precision pure strapdown RLG system. Based upon current performance, reasonable projections and analysis, and laboratory test data, it is anticipated that strapdown RLG systems can deliver performance consistent with the precision requirements of SNU 84-3 (0.2 nm/h after a precision-extended time-alignment) while retaining the major advantages that the pure strapdown mechanization offers.<<ETX>>","PeriodicalId":156436,"journal":{"name":"IEEE Symposium on Position Location and Navigation. A Decade of Excellence in the Navigation Sciences","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Symposium on Position Location and Navigation. A Decade of Excellence in the Navigation Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLANS.1990.66225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Honeywell research and development projects directed at improvements in the design, building, and testing of RLG (ring laser gyro) strapdown systems are reviewed. Some of the performance standards being set with current hardware are discussed, as are a number of the known error sources existing in these systems along with candidate solutions, the analysis and test results upon which precision navigation performance projections are based, and plans to demonstrate the feasibility of a precision pure strapdown RLG system. Based upon current performance, reasonable projections and analysis, and laboratory test data, it is anticipated that strapdown RLG systems can deliver performance consistent with the precision requirements of SNU 84-3 (0.2 nm/h after a precision-extended time-alignment) while retaining the major advantages that the pure strapdown mechanization offers.<>
捷联式RLG惯性系统的下一个前沿领域。精确导航
霍尼韦尔的研究和开发项目旨在改进RLG(环形激光陀螺)捷联系统的设计、建造和测试。讨论了当前硬件设置的一些性能标准,以及这些系统中存在的一些已知误差源,以及候选解决方案,精确导航性能预测所依据的分析和测试结果,以及证明精确纯捷联RLG系统可行性的计划。基于目前的性能,合理的预测和分析,以及实验室测试数据,预计捷联式RLG系统可以提供符合SNU 84-3精度要求的性能(0.2 nm/h),同时保留纯捷联式机械化提供的主要优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信