Simplified Algorithms of Variance Component Estimation for Static and Kinematic GPS Single Point Positioning

J. Wang, N. Gopaul, B. Scherzinger
{"title":"Simplified Algorithms of Variance Component Estimation for Static and Kinematic GPS Single Point Positioning","authors":"J. Wang, N. Gopaul, B. Scherzinger","doi":"10.5081/JGPS.8.1.43","DOIUrl":null,"url":null,"abstract":"This paper adapts Helmert’s simplified variance component estimation (VCE) algorithm for static and kinematic GPS single point positioning (SPP). First, the VCE algorithm for a static GPS SPP is formulated. Second, the concept of redundancy contribution of observations is developed in Kalman filtering so that the VCE algorithm is further delivered in Kalman filtering. The proposed VCE approach in Kalman filtering allows the variance components for individual measurement noises and individual independent process noises to be estimated. Some VCE numerical results from static and kinematic GPS datasets are presented and discussed.","PeriodicalId":237555,"journal":{"name":"Journal of Global Positioning Systems","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Global Positioning Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5081/JGPS.8.1.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

This paper adapts Helmert’s simplified variance component estimation (VCE) algorithm for static and kinematic GPS single point positioning (SPP). First, the VCE algorithm for a static GPS SPP is formulated. Second, the concept of redundancy contribution of observations is developed in Kalman filtering so that the VCE algorithm is further delivered in Kalman filtering. The proposed VCE approach in Kalman filtering allows the variance components for individual measurement noises and individual independent process noises to be estimated. Some VCE numerical results from static and kinematic GPS datasets are presented and discussed.
静态和运动GPS单点定位方差分量估计的简化算法
本文将Helmert的简化方差分量估计(VCE)算法应用于GPS静态和运动单点定位。首先,给出了静态GPS SPP的VCE算法。其次,在卡尔曼滤波中提出了观测值冗余贡献的概念,使VCE算法在卡尔曼滤波中得到进一步的实现。在卡尔曼滤波中提出的VCE方法允许估计单个测量噪声和单个独立过程噪声的方差分量。给出并讨论了静态和动态GPS数据集的VCE数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信