PIN-TRUST: Fast Trust Propagation Exploiting Positive, Implicit, and Negative Information

Min-Hee Jang, C. Faloutsos, Sang-Wook Kim, U. Kang, Jiwoon Ha
{"title":"PIN-TRUST: Fast Trust Propagation Exploiting Positive, Implicit, and Negative Information","authors":"Min-Hee Jang, C. Faloutsos, Sang-Wook Kim, U. Kang, Jiwoon Ha","doi":"10.1145/2983323.2983753","DOIUrl":null,"url":null,"abstract":"Given \"who-trusts/distrusts-whom\" information, how can we propagate the trust and distrust? With the appearance of fraudsters in social network sites, the importance of trust prediction has increased. Most such methods use only explicit and implicit trust information (e.g., if Smith likes several of Johnson's reviews, then Smith implicitly trusts Johnson), but they do not consider distrust. In this paper, we propose PIN-TRUST, a novel method to handle all three types of interaction information: explicit trust, implicit trust, and explicit distrust. The novelties of our method are the following: (a) it is carefully designed, to take into account positive, implicit, and negative information, (b) it is scalable (i.e., linear on the input size), (c) most importantly, it is effective and accurate. Our extensive experiments with a real dataset, Epinions.com data, of 100K nodes and 1M edges, confirm that PIN-TRUST is scalable and outperforms existing methods in terms of prediction accuracy, achieving up to 50.4 percentage relative improvement.","PeriodicalId":250808,"journal":{"name":"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2983323.2983753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

Given "who-trusts/distrusts-whom" information, how can we propagate the trust and distrust? With the appearance of fraudsters in social network sites, the importance of trust prediction has increased. Most such methods use only explicit and implicit trust information (e.g., if Smith likes several of Johnson's reviews, then Smith implicitly trusts Johnson), but they do not consider distrust. In this paper, we propose PIN-TRUST, a novel method to handle all three types of interaction information: explicit trust, implicit trust, and explicit distrust. The novelties of our method are the following: (a) it is carefully designed, to take into account positive, implicit, and negative information, (b) it is scalable (i.e., linear on the input size), (c) most importantly, it is effective and accurate. Our extensive experiments with a real dataset, Epinions.com data, of 100K nodes and 1M edges, confirm that PIN-TRUST is scalable and outperforms existing methods in terms of prediction accuracy, achieving up to 50.4 percentage relative improvement.
PIN-TRUST:利用正面、隐含和负面信息的快速信任传播
鉴于“谁信任谁不信任谁”的信息,我们如何传播信任和不信任?随着社交网站诈骗者的出现,信任预测的重要性与日俱增。大多数这样的方法只使用显式和隐式信任信息(例如,如果史密斯喜欢约翰逊的几篇评论,那么史密斯隐含地信任约翰逊),但他们不考虑不信任。在本文中,我们提出PIN-TRUST一种新的方法来处理所有三种类型的交互信息:显式信任、隐式信任和显式不信任。我们的方法的新颖之处在于:(a)它是精心设计的,考虑到积极的,隐含的和消极的信息,(b)它是可扩展的(即,输入大小的线性),(c)最重要的是,它是有效和准确的。我们对真实数据集Epinions.com数据进行了广泛的实验,其中包含10万个节点和1万个边,证实了PIN-TRUST具有可扩展性,并且在预测精度方面优于现有方法,实现了高达50.4%的相对改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信