Lijuan Duan, Huiling Geng, Jun Zeng, Junbiao Pang, Qingming Huang
{"title":"Fast and Accurately Measuring Crack Width via Cascade Principal Component Analysis","authors":"Lijuan Duan, Huiling Geng, Jun Zeng, Junbiao Pang, Qingming Huang","doi":"10.1145/3338533.3366578","DOIUrl":null,"url":null,"abstract":"Crack width is an important indicator to diagnose the safety of constructions, e.g., asphalt road, concrete bridge. In practice, measuring crack width is a challenge task: (1) the irregular and non-smooth boundary makes the traditional method inefficient; (2) pixel-wise measurement guarantees the accuracy of a system and (3) understanding the damage of constructions from any pre-selected points is a mandatary requirement. To address these problems, we propose a cascade Principal Component Analysis (PCA) to efficiently measure crack width from images. Firstly, the binary crack image is obtained to describe the crack via the off-the-shelf crack detection algorithms. Secondly, given a pre-selected point, PCA is used to find the main axis of a crack. Thirdly, Robust Principal Component Analysis (RPCA) is proposed to compute the main axis of a crack with a irregular boundary. We evaluate the proposed method on a real data set. The experimental results show that the proposed method achieves the state-of-the-art performances in terms of efficiency and effectiveness.","PeriodicalId":273086,"journal":{"name":"Proceedings of the ACM Multimedia Asia","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Multimedia Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3338533.3366578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Crack width is an important indicator to diagnose the safety of constructions, e.g., asphalt road, concrete bridge. In practice, measuring crack width is a challenge task: (1) the irregular and non-smooth boundary makes the traditional method inefficient; (2) pixel-wise measurement guarantees the accuracy of a system and (3) understanding the damage of constructions from any pre-selected points is a mandatary requirement. To address these problems, we propose a cascade Principal Component Analysis (PCA) to efficiently measure crack width from images. Firstly, the binary crack image is obtained to describe the crack via the off-the-shelf crack detection algorithms. Secondly, given a pre-selected point, PCA is used to find the main axis of a crack. Thirdly, Robust Principal Component Analysis (RPCA) is proposed to compute the main axis of a crack with a irregular boundary. We evaluate the proposed method on a real data set. The experimental results show that the proposed method achieves the state-of-the-art performances in terms of efficiency and effectiveness.