Emotional Speech Classifier Systems: For Sensitive Assistance to support Disabled Individuals

V. V. Raju, P. Jain, K. Gurugubelli, A. Vuppala
{"title":"Emotional Speech Classifier Systems: For Sensitive Assistance to support Disabled Individuals","authors":"V. V. Raju, P. Jain, K. Gurugubelli, A. Vuppala","doi":"10.21437/SMM.2018-2","DOIUrl":null,"url":null,"abstract":"This paper provides the classification of emotionally annotated speech of mentally impaired people. The main problem encoun-tered in the classification task is the class-imbalance. This imbalance is due to the availability of large number of speech samples for the neutral speech compared to other emotional speech. Different sampling methodologies are explored at the back-end to handle this class-imbalance problem. Mel-frequency cepstral coefficients (MFCCs) features are considered at the front-end, deep neural networks (DNNs) and gradient boosted decision trees (GBDT) are investigated at the back-end as classifiers. The experimental results obtained from the EmotAsS dataset have shown higher classification accuracy and Unweighted Average Recall (UAR) scores over the baseline system.","PeriodicalId":158743,"journal":{"name":"Workshop on Speech, Music and Mind (SMM 2018)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Speech, Music and Mind (SMM 2018)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/SMM.2018-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper provides the classification of emotionally annotated speech of mentally impaired people. The main problem encoun-tered in the classification task is the class-imbalance. This imbalance is due to the availability of large number of speech samples for the neutral speech compared to other emotional speech. Different sampling methodologies are explored at the back-end to handle this class-imbalance problem. Mel-frequency cepstral coefficients (MFCCs) features are considered at the front-end, deep neural networks (DNNs) and gradient boosted decision trees (GBDT) are investigated at the back-end as classifiers. The experimental results obtained from the EmotAsS dataset have shown higher classification accuracy and Unweighted Average Recall (UAR) scores over the baseline system.
情感语音分类系统:用于支持残疾人的敏感援助
本文对智障人士的情感注释言语进行了分类。分类任务中遇到的主要问题是类不平衡。这种不平衡是由于与其他情绪言语相比,中性言语有大量的言语样本。在后端探索了不同的抽样方法来处理这种类不平衡问题。在前端考虑Mel-frequency倒谱系数(MFCCs)特征,在后端研究深度神经网络(dnn)和梯度增强决策树(GBDT)作为分类器。EmotAsS数据集的实验结果显示,与基线系统相比,EmotAsS的分类准确率和未加权平均召回率(UAR)得分更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信