Sentiment Predictions Using Deep Belief Networks Model for Odd-Even Policy in Delhi

S. Sharma, Ximi Hoque, Pravin Chandra
{"title":"Sentiment Predictions Using Deep Belief Networks Model for Odd-Even Policy in Delhi","authors":"S. Sharma, Ximi Hoque, Pravin Chandra","doi":"10.4018/IJSE.2016070101","DOIUrl":null,"url":null,"abstract":"This paper analyzes the odd-even policy in Delhi using tweets posted on Twitter from December 2015 to August 2016. Twitter is a social network where users post their feelings, opinions and sentiments for any event. This paper transforms the unstructured tweets into structured information using open source libraries. Further objective is to build a model using Deep Belief Networks classification (DBN) to classify unseen tweets on the same context. This paper collects tweets on this event under six hashtags. This study explores three freely available resources / Application Programming Interfaces (APIs) for labeling of tweets for academic research. This paper proposes three sentiment prediction models using the sentiment predictions provided by three APIs. DBN classifier is used to build six models. The performances of these six models are evaluated through standard evaluation metrics. The experimental results reveal that the TextBlob API and proposed Preference Model outperformed than the other four sentiment prediction models.","PeriodicalId":272943,"journal":{"name":"Int. J. Synth. Emot.","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Synth. Emot.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJSE.2016070101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper analyzes the odd-even policy in Delhi using tweets posted on Twitter from December 2015 to August 2016. Twitter is a social network where users post their feelings, opinions and sentiments for any event. This paper transforms the unstructured tweets into structured information using open source libraries. Further objective is to build a model using Deep Belief Networks classification (DBN) to classify unseen tweets on the same context. This paper collects tweets on this event under six hashtags. This study explores three freely available resources / Application Programming Interfaces (APIs) for labeling of tweets for academic research. This paper proposes three sentiment prediction models using the sentiment predictions provided by three APIs. DBN classifier is used to build six models. The performances of these six models are evaluated through standard evaluation metrics. The experimental results reveal that the TextBlob API and proposed Preference Model outperformed than the other four sentiment prediction models.
基于深度信念网络模型的德里奇偶政策情绪预测
本文使用2015年12月至2016年8月在Twitter上发布的推文分析了德里的单双号政策。Twitter是一个社交网络,用户可以在这里发布他们对任何事件的感受、观点和情绪。本文利用开源库将非结构化推文转换为结构化信息。进一步的目标是建立一个使用深度信念网络分类(DBN)的模型,对相同上下文下的未见推文进行分类。本文收集了有关该事件的六个标签的推文。本研究探索了三种免费的资源/应用程序编程接口(api),用于学术研究的tweet标签。本文利用三个api提供的情绪预测,提出了三个情绪预测模型。DBN分类器用于构建6个模型。通过标准的评价指标对这六种模型的性能进行评价。实验结果表明,TextBlob API和提出的偏好模型比其他四种情绪预测模型表现更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信