What transfers in morphological inflection? Experiments with analogical models

M. Elsner
{"title":"What transfers in morphological inflection? Experiments with analogical models","authors":"M. Elsner","doi":"10.18653/v1/2021.sigmorphon-1.18","DOIUrl":null,"url":null,"abstract":"We investigate how abstract processes like suffixation can be learned from morphological inflection task data using an analogical memory-based framework. In this framework, the inflection target form is specified by providing an example inflection of another word in the language. We show that this model is capable of near-baseline performance on the SigMorphon 2020 inflection challenge. Such a model can make predictions for unseen languages, allowing us to perform one-shot inflection on natural languages and investigate morphological transfer with synthetic probes. Accuracy for one-shot transfer can be unexpectedly high for some target languages (88% in Shona) and language families (53% across Romance). Probe experiments show that the model learns partially generalizable representations of prefixation, suffixation and reduplication, aiding its ability to transfer. We argue that the degree of generality of these process representations also helps to explain transfer results from previous research.","PeriodicalId":187165,"journal":{"name":"Proceedings of the 18th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2021.sigmorphon-1.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We investigate how abstract processes like suffixation can be learned from morphological inflection task data using an analogical memory-based framework. In this framework, the inflection target form is specified by providing an example inflection of another word in the language. We show that this model is capable of near-baseline performance on the SigMorphon 2020 inflection challenge. Such a model can make predictions for unseen languages, allowing us to perform one-shot inflection on natural languages and investigate morphological transfer with synthetic probes. Accuracy for one-shot transfer can be unexpectedly high for some target languages (88% in Shona) and language families (53% across Romance). Probe experiments show that the model learns partially generalizable representations of prefixation, suffixation and reduplication, aiding its ability to transfer. We argue that the degree of generality of these process representations also helps to explain transfer results from previous research.
形态变化中有什么变化?用类比模型进行实验
我们研究了如何使用基于类比记忆的框架从形态学变形任务数据中学习后缀等抽象过程。在这个框架中,通过提供语言中另一个单词的屈折变化示例来指定屈折变化的目标形式。我们表明,该模型能够在SigMorphon 2020拐点挑战中达到接近基线的性能。这样的模型可以对未知语言进行预测,使我们能够对自然语言进行一次变形,并使用合成探针研究形态转移。对于某些目标语言(绍纳语为88%)和语系(罗曼语为53%),一次性迁移的准确性可能会出乎意料地高。探测实验表明,该模型学习了前缀、后缀和重复的部分可泛化表示,有助于其迁移能力。我们认为,这些过程表征的普遍性程度也有助于解释先前研究的迁移结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信