Food Production Forecasting with Time Series and Ensemble Modeling Methods

Kittisak Kerdprasop, P. Chuaybamroong, Nittaya Kerdprasop
{"title":"Food Production Forecasting with Time Series and Ensemble Modeling Methods","authors":"Kittisak Kerdprasop, P. Chuaybamroong, Nittaya Kerdprasop","doi":"10.1145/3582099.3582109","DOIUrl":null,"url":null,"abstract":"Safe and sufficient food production is important to the achievement of the sustainable development goal targeting \"zero hunger by the year 2030\" agreed by all member states of the United Nations upon the summit meeting in 2015. This research supports such goal by performing insightful analysis over a long duration of global food production spanning from the year 1971 to 2020. Analysis methodology adopts the application of time series forecasting using the ARIMA algorithm with varied parameter values as well as the machine learning modeling methods through six learning algorithms, which are linear regression (MLR), support vector regression (SVR), artificial neural network (ANN), random forest (RF), gradient boosting (GB), and AdaBoost (AB). The algorithms MLR, SVR, ANN are in the category of single modeling method that a single model is enough for predicting future value, whereas RF, GB, AB are ensemble in which a group of models are used cooperatively to predict the output. To observe characteristics of modeling results, the global models trained from food production index of 164 countries are compared against the minor scale of Thailand. For time series forecasting results, we found that ARIMA (p,d,q) model yields the best prediction at a global scale when setting the parameters (p,d,q) to be (1,1,1), but the parameter values (1,1,2) works better for the minor scale of a single country. In the case of machine learning modeling methods, the ensemble of gradient boosting produces the most accurate forecasting result in both global and regional scales.","PeriodicalId":222372,"journal":{"name":"Proceedings of the 2022 5th Artificial Intelligence and Cloud Computing Conference","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 5th Artificial Intelligence and Cloud Computing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3582099.3582109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Safe and sufficient food production is important to the achievement of the sustainable development goal targeting "zero hunger by the year 2030" agreed by all member states of the United Nations upon the summit meeting in 2015. This research supports such goal by performing insightful analysis over a long duration of global food production spanning from the year 1971 to 2020. Analysis methodology adopts the application of time series forecasting using the ARIMA algorithm with varied parameter values as well as the machine learning modeling methods through six learning algorithms, which are linear regression (MLR), support vector regression (SVR), artificial neural network (ANN), random forest (RF), gradient boosting (GB), and AdaBoost (AB). The algorithms MLR, SVR, ANN are in the category of single modeling method that a single model is enough for predicting future value, whereas RF, GB, AB are ensemble in which a group of models are used cooperatively to predict the output. To observe characteristics of modeling results, the global models trained from food production index of 164 countries are compared against the minor scale of Thailand. For time series forecasting results, we found that ARIMA (p,d,q) model yields the best prediction at a global scale when setting the parameters (p,d,q) to be (1,1,1), but the parameter values (1,1,2) works better for the minor scale of a single country. In the case of machine learning modeling methods, the ensemble of gradient boosting produces the most accurate forecasting result in both global and regional scales.
基于时间序列和集成建模方法的粮食产量预测
安全充足的粮食生产对于实现联合国全体会员国在2015年首脑会议上商定的“到2030年实现零饥饿”的可持续发展目标具有重要意义。本研究通过对1971年至2020年全球粮食生产的长期分析来支持这一目标。分析方法采用采用变参数值ARIMA算法进行时间序列预测,并通过线性回归(MLR)、支持向量回归(SVR)、人工神经网络(ANN)、随机森林(RF)、梯度增强(GB)和AdaBoost (AB) 6种学习算法进行机器学习建模方法。MLR、SVR、ANN算法属于单一建模方法,一个模型就可以预测未来的值,而RF、GB、AB算法是集成的,一组模型协同使用来预测输出。为了观察建模结果的特征,将164个国家的粮食生产指数训练的全球模型与泰国的小尺度进行比较。对于时间序列预测结果,我们发现当参数(p,d,q)设置为(1,1,1)时,ARIMA (p,d,q)模型在全球尺度上的预测效果最好,但参数值(1,1,2)对于单个国家的小尺度效果更好。在机器学习建模方法中,梯度增强的集合在全球和区域尺度上都能产生最准确的预测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信